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Abstract 

Solid-state NMR is a powerful and versatile spectroscopic method for analyzing the 

sophisticated structure of biological systems, especially the non-crystalline and insoluble 

systems that are difficult for solution NMR and X-ray diffraction to study. In this thesis, we 

used solid-state NMR to elucidate the structures of complex systems, such as peptide 

aggregates, and membrane peptides in oriented and unoriented lipid bilayers. Various NMR 

techniques have been used to study the peptide-peptide and peptide-lipid interactions, which 

have a great influence on the topology of these systems. 

 The peptides we are interested in are antimicrobial peptides (AMP), which can kill 

microbes at micromolar concentration by disrupting the microbial cell membrane. These 

peptides usually contain cationic residues and have an amphipathic structure. Understanding 

the peptide-peptide and peptide-lipid interactions will shed light on the antimicrobial 

mechanism of AMP. To determine the oligomeric structure of the aggregates of an 

antimicrobial beta-hairpin peptide, Protegrin-1 (PG-1), we used 2D 1H-driven 13C spin 

diffusion and other correlation methods. We found that PG-1 aggregates in a parallel fashion 

with like strands lining the intermolecular interface. In an oriented membrane system, we 

applied a method for determining the orientation of β-sheet membrane peptides using 2D 

separated local-field spectroscopy. Retrocyclin-2, an antibacterial and antiviral β-hairpin 

peptide, was found to adopt a transmembrane orientation in short-chain lipids (DLPC) and a 

more in-plane orientation in long-chain lipids (POPC), which indicates that the membrane 

thickness affects the peptide orientation. In unoriented membrane systems, we utilized a 

variety of methods under magic-angle spinning (MAS), such as 13C{31P} REDOR, 13C 

DIPSHIFT, LGCP and 1H spin diffusion, to study the interaction of PG-1 with lipid bilayers. 

The experimental results led to the toroidal pore model as the mechanism of action of PG-1. 

Moreover, we found that the guanidinium-phosphate complexation is the driving force for 

pore formation.  Both ionic interaction and hydrogen-bonding play a significant role in 

stabilizing the guanidinium-phosphate complex, because altering either one of the two factors 

would affect the antimicrobial activity and membrane topology of PG-1 dramatically. By 

mutating the Arg sidechain with methylation, we showed that without sufficient hydrogen-

bonding, the mutant adopts an in-plane orientation and undergoes fast uniaxially rotation. 
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Chapter 1 

Introduction 
 

1.1 Antimicrobial Peptides 

 

 Antimicrobial peptides are small polypeptides (usually containing less than 50 amino 

acids) found in animals and plants, which possess potent and broad-spectrum antimicrobial 

activity. They can kill a wide range of microbes, such as bacteria, fungi, viruses and protozoa, 

thus these peptides serve multicellular organisms as advanced protective weapons against 

unicellular organisms. Unlike antibiotics produced or isolated from microbial sources, which 

are categorized by common chemical structure [1], antimicrobial peptides have such a great 

diversity that they can only be categorized generally based on their secondary structures. For 

instances, magainin from the African clawed frog [2] and LL-37 from human [3] are α-

helical peptides; Tachyplesin from the horseshoe crab [4] and protegrin-1 in porcine 

leukocytes [5] are anti-parallel β-sheet peptides constrained by disulfide bonds; The 

tryptophan-rich indolicidin found in the cow [6] and the proline-arginine-rich PR39 in the pig 

[7] are non-helical linear peptides. Despite this great structural diversity, all classes of 

antimicrobial peptides contain hydrophobic, hydrophilic and cationic residues with the 

underlying structural principle that polar and non-polar regions in the molecule are spatially 

separated (‘amphipathic’ structure) [8].   

How do antimicrobial peptides target microbes in the major presence of host cells? 

These small peptides utilize a surprisingly fundamental difference between membranes of 

microbes and multicellular organisms. Microbial membranes are rich in anionic 

phospholipids, especially in the outer leaflet, rendering the cells susceptible to the 

antimicrobial peptides with cationic residues. In contrast, the outer leaflet of membranes of 

animals and plants consist of zwitterionic phospholipids and most anionic lipids are present 

in the inner leaflet [9]. The cholesterol present in most mammalian cell membranes further 

reduces the peptide activity by either rigidifying the lipid bilayer or interacting with the 

peptides [10].  
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In general, antimicrobial peptides kill microbes by disrupting their cell membranes. 

Various models have been proposed for this membrane disruption. The first is the “barrel-

stave” model (Fig. 1.1a), where the peptides aggregate as a transmembrane helical bundle 

that inserts into the bilayer to form transmembrane pores that cause lysis of the cell 

substances. This model has been used to explain pore formation and step-wise conductivity 

increases in single-channel measurements on alamethicin [11]. The second is the carpet 

model (Fig. 1.1b), where the peptides accumulate on the surface with the hydrophobic face 

embedded relatively shallowly within the hydrophobic region of the membrane and its 

positive charges directed toward the hydrophilic region. When the peptide concentration 

reaches a threshold, the peptides would cause bilayer disruption and lead to the leakage of the 

cellular contents. This model is proposed based on observations with the antimicrobial 

peptide dermaseptin [12].  The third model is the toroidal pore model (Fig. 1.1c), where the 

peptides aggregate and induce disorder of lipids and the two leaflets of the bilayer merge to 

form a toroidal pore. This model can explain the larger water-filled cavities [13] and 

enhanced lipid flip-flop rate [14] caused by magainin in the membrane.  

 
Figure 1.1. Three models of membrane disruption mechanism of antimicrobial peptides: 

Barrel-stave model (a), Carpet model (b) and Toroidal Pore model (c).  

 

 Microbes tend to develop resistance against conventional antibiotics like penicillin by 

mutating the target protein with a sensitive microbial strain. However, antimicrobial peptides 

target microbial membrane, whose composition and design are very difficult to change, and 

thus microbes have not been successful in resisting antimicrobial peptides. In a few rare 

cases, some microbes express an outer membrane with less anionic lipids for peptides to bind, 

and other resistant species use destructive proteases to digest peptides [15].   
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1.2 Protegrin-1: A β-Hairpin Antimicrobial Peptide 

 

 Protegrin-1 (PG-1) is one of a family of protegrin peptides isolated from porcine 

neutrophils [16]. It possesses an unusually broad spectrum of antimicrobial activity against 

gram-positive and gram-negative bacteria, fungi and some enveloped viruses [5]. Its 

minimum inhibitory concentrations are in the range of a few micrograms per millilitre [17]. 

PG-1 (RGGRLCYCRRRFCVCVGR) has eighteen amino acids and six of them are Arg. It 

also has two disulfide bonds to constrain the structure to be a β-hairpin, which can be 

separated into a β-strand region (residue 4–8 and 13–17) and a β-turn region (residue 9–12). 

An extensive structure–activity relationship (SAR) study has been conducted on several 

hundred protegrin analogues to conclude that overall structural features such as 

amphiphilicity, charge density, intermolecular hydrogen-bonding capability and hairpin 

shape are more important to activity than the presence of specific amino acids and 

stereochemistry [18]. PG-1 carries out its antimicrobial function by forming pores in the 

microbial cell membrane, thus disrupting the membrane’s barrier function. These pores were 

observed from lipid vesicle leakage assays [19, 20] and neutron diffraction [21]. However, 

the detailed mechanism of membrane disruption at the atomic level is still unclear for PG-1. 

Solid-state NMR spectroscopy is an excellent technique to provide high-resolution 

information about intermolecular interaction and dynamics in amorphous and insoluble 

systems such as lipid membranes for which solution NMR and X-ray diffraction are not 

suitable. In order to distinguish which one of the three models mentioned above explains the 

antimicrobial activity of PG-1 and to further elucidate the interaction between PG-1 and lipid 

bilayers, the following aspects of the complex system consisting of PG-1 and lipid bilayers 

have to be investigated: 

 

Peptide Oligomerization 

Both the barrel-stave model and the toroidal pore model involve peptide 

oligomerization. SAR studies of PG-1 showed that linearized analogues or analogues that 

have amino acid mutations that eliminate hydrogen bonding between PG-1 β-sheets have 
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reduced activity [18]. Therefore, understanding the oligomerization of PG-1 in the lipid 

bilayers should shed light on its antimicrobial mechanism. Previous work in our group using 
1H and 19F spin diffusion NMR showed that PG-1 self-assembles into a transmembrane β-

barrel in bacteria-mimetic POPE/POPG membranes [22]. A solution NMR study of PG-1 in 

DPC micelles [23] showed that the peptide forms antiparallel dimers with the C-strand lining 

the dimer interface. Since micelles are known to impose curvature strains onto peptides due 

to spatial constraint, it is possible that the oligomeric state of PG-1 in micelles may not be the 

same as that in the biologically more relevant lipid bilayers. 

 

Depth of Insertion 

In general, the insertion of membrane proteins is interesting because of the 

amphipathic nature of the bilayers. The concepts of “hydrophobic matching” and “interfacial 

anchoring” have been used in various studies to determine the alignments of α-helical 

peptides in the membrane [24-27]. Nevertheless, few studies have been conducted on the 

insertion of β-sheet membrane peptides. The paramagnetic relaxation enhancement (PRE) 

effect had been used by Buffy, et al. in our laboratory to determine the insertion of PG-1 in 

DLPC bilayers [28].  The Mn2+ ions on the surface of the bilayer induce distance-dependent 

T2 decrease and  corresponding signal loss. The results showed that residues G2 at the N-

terminus and F12 at the β-turn of the peptide reside near the membrane surface, whereas L5 

and V16 are embedded in the acyl chain region, which indicates that PG-1 is fully inserted in 

DLPC bilayers.  Compared with the hydrophobic matching conditions of α-helical peptides, 

PG-1 shows hydrophobic mismatch of 8–10 Å in DLPC bilayers and possibly induces 

membrane thinning [28], but the case of PG-1 insertion in long-chain lipid bilayers had still 

been unclear and can not be explained by hydrophobic mismatch. 

 

Peptide-Lipid Contact 

Revealing the contact between the peptide and the lipids helps to explain how the 

peptide binds the lipid bilayer. Indirect methods such as 1H spin diffusion have been used to 

study the contacts between the peptides and different parts of the membrane. 13C and 31P 

detected 1H spin diffusion from lipid to a colicin Ia channel domain was used to prove the 
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existence of membrane-embedded domain [29]. As for the β-hairpin PG-1, 1H spin diffusion 

experiments showed that PG-1 contacts both the surface and the hydrophobic center of the 

POPC bilayer [30]. More direct methods such as distance measurement from peptide to lipid 

have been utilized in discerning the model for an α-helical antimicrobial peptide, K3, in lipid 

bilayers [31, 32]. Short peptide-headgroup distances, short peptide-lipid chain distances, and 

enhanced lipid headgroup-chain contacts were obtained, though only 30% of peptides have 

contact with lipids. Combined with the distances measured within K3 aggregates and K3 

alignment obtained by oriented-sample 19F NMR, a toroidal pore model was proposed for the 

mode of action of K3 [32]. Compared to Lys-containing K3, Arg-containing PG-1 is more 

potent and may have closer contact with lipids, especially the headgroups. 

 

Peptide Dynamics 

Lipid membranes consist of water and lipids and are highly fluid. Lipids undergo fast 

lateral diffusion and uniaxial rotational diffusion, thus molecular motion for membrane 

proteins is very common and is often related to the function and lipid-interaction of proteins. 

For small membrane peptides, whole-body motion has been observed for both α-helical [33] 

and β-sheet peptides [34]. In some cases, if the motion of the peptides is uniaxial rotation, 

then the motionally averaged dipolar coupling and chemical shift anisotropy can provide 

valuable information about peptide orientation [35-38]. For large membrane proteins, large-

amplitude segmental motion has been reported. For instance, membrane-induced mobility 

increase was found in the colicin Ia channel domain [39], suggesting that the mobile lipids 

interact with protein and thus increase the protein internal motion. Versatile dynamics of 

segmental fluctuations and axially symmetric overall motions were shown for the C-terminus 

of membrane-associated full-length lipidated Ras protein [40]. The dynamics of PG-1 serves 

as an indicator of the interaction between PG-1 and lipids. Particularly, the motion of Arg 

residues of PG-1 poses a special interest, because cationic Arg residues may bind anionic 

lipid headgroups, and their dynamics should be affected. 

 

Peptide Orientation 



www.manaraa.com

 6

 The orientation of membrane peptides and protein domains in lipid bilayers is an 

important aspect of the three-dimensional structure of these molecules. 2D separated-local 

field (SLF) spectroscopy correlating the 15N chemical shift with 15N-1H dipolar coupling has 

been well established to determine the orientation of α-helical peptides and protein domains 

in macroscopically aligned membranes [41]. Although the preparation of well-oriented 

membrane samples is a limiting factor to the success of this type of experiment, recent 

developments of new aligned sample systems such as bicelles [42-45] and nanopore-

supported lipid nanotube arrays [46-48] have greatly improved the stability and surface 

accessibility of aligned bilayers. Despite the advances in the orientation determination of α-

helical membrane peptides, information about the orientation of β-sheet peptides in lipid 

bilayers is still scarce, due to the complexity of the pattern analysis of 2D SLF spectra. 

Recently, the orientation of the β-barrel domain of the bacterial outer membrane protein 

OmpX has been investigated in the membrane [49]. The resolved peaks in 2D SLF spectra 

agreed well with the spectra calculated from the crystal structure of OmpX with 5˚ tilt angle. 

Compared to large β-barrel proteins, small disulfide-stabilized β-hairpin peptides are 

promising systems both for understanding β-sheet peptide binding to lipid membranes and 

for testing the applicability of the solid-state NMR method. The orientation of PG-1 in DLPC 

bilayers has been determined by fitting the experimental results with calculated orientation-

dependent 13C and 15N chemical shifts [34]. Whether the orientation of the peptide is in-plane 

or transmembrane implicates which model is likely to explain its antimicrobial action.  

 

1.3 Guanidinium-Phosphate Complexation 

 

 The guanidinium group on the side chain of Arg is a very stable cation and is 

responsible for most of Arg’s noncovalent interactions, among which particularly important 

interactions are those formed by guanidinium with anions such as phosphates, sulfates and 

carboxylates. These interactions are often used in molecular recognition since ion-pairing can 

be versatile and combined with other interactions to develop unique schemes, both for 

biological mimetics and for the purpose of drug developments [50].           
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Generally, the insertion of the charged and polar residues into the hydrophobic part of 

the bilayer is energetically unfavorable. Yet charged and polar residues are surprisingly 

common in a diverse range of membrane proteins, such as antimicrobial peptides, cell-

penetrating peptides and ion channel domains. The hydrophobicity scale [51] has been 

established in detail by measuring, for examples, the free energies of transferring peptides 

from water to lipid bilayer interface [52] and octanol [53]. The whole-residue hydrophobicity 

scale appears to be a good measure of the partitioning of hydrophobic α-helices into the 

bilayer interior. Recently, the scale was modified “biologically” by utilizing an endoplasmic 

reticulum translocon system mutated with designed α-helical strain. The study found that the 

free energy of insertion not only depends on the polarity of the residues, but also depends 

sensitively on the position of the polar residues in the membrane [54]. The resulting 

biological hydrophobicity scale was then used to predict transmembrane helices based on the 

amino acid sequence and overall length [55]. In addition to taking into account the protein-

lipid hydrophobic interaction, hydrophilic interactions such as ionic interaction and hydrogen 

bonding need to be considered for charged and polar amino acids. A similar translocon 

system with the S4 helix of the voltage-gated potassium channel KvAP inserts into the 

membrane despite the presence of four Arg’s [56]. Molecular dynamics simulations showed 

that the effective lipid bilayer thickness was reduced to an astonishingly small ~10 Å near the 

inserted single S4 helix so that water and phosphate groups stabilize the Arg residues in the 

middle of the helix through hydrogen bonding [57].  

 Indirect evidence about anion-mediated insertion of cationic charged residues has 

been reported. Fluorescently labeled oligoarginines, which are among the most active cell-

penetrating peptides, was found to phase-transfer from water into bulk chloroform and 

anionic lipid membranes with the mediation of amphiphilic lipid and reverse-phase transfer 

from bulk chloroform and lipids into water with the mediation of hydrophilic heparin [58]. 

The cellular uptake mechanism of guanidinium-rich transporters conjugated to small 

molecules has been studied by testing the partition of a fluoresceinated arginine octamer in a 

bilayer of octanol and water [59]. With the help of a fatty acid salt, the polyarginines transfer 

from water into octanol. But the uptake was greatly reduced when the guanidinium group of 

each arginine was methylated. This reduction can be explained by the weakened hydrogen 
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bonding in the guanidinium-anion bidentate complex. Therefore, hydrogen bonding plays an 

important role in the cellular uptake of cell-penetrating peptides.       

 

1.4 Thesis Organization 

 

 Solid-state NMR studies of β-sheet antimicrobial peptides are presented in this thesis. 

Chapter 2 describes the procedures for synthesizing protected amino acids, preparing various 

types of samples (oriented and unoriented samples), NMR techniques which have been used 

in the experiments, and methods for simulating experimental data.  Various input codes for 

numerical simulations are included in the Appendices.  

Chapter 3 shows the investigation of the oligomeric structure of lipid-free PG-1 

aggregates. Using 2D 1H-driven spin diffusion (PDSD) and other correlation methods, we 

determined that PG-1 molecules aggregate in a parallel fashion with like strands lining the 

intermolecular interface.  

Chapter 4 demonstrates the method for determining the orientation of β-sheet 

membrane peptides using 2D separated local-field spectroscopy. Retrocyclin-2 (RC100b), an 

antibacterial and antiviral β-hairpin peptide, was found to adopt a transmembrane orientation 

in short-chain lipids (DLPC) and a more in-plane orientation in long-chain lipids (POPC), 

which indicates that the membrane thickness affects the peptide orientation.  

Chapter 5 demonstrates that the cryoprotectant trehalose retains the lipid bilayer 

structure during dehydration by comparing the lipid conformation and dynamics between 

trehalose-protected lyophilized membranes and hydrated membranes. The trehalose-

incorporated membrane is a promising matrix for membrane protein structure determination 

without the interference of motion.  

 Solid-state NMR studies on various aspects of the interaction of PG-1 with lipid 

bilayers are described in chapter 6, 7, and 8. In chapter 6, the depth of insertion of Arg 

residues of PG-1 is studied in anionic and zwitterionic membranes by measuring the 13C-31P 

distances between Arg and lipid headgroups. Short peptide-lipid distances and 

transmembrane orientation of PG-1 led to the toroidal pore model as the mechanism of action 

of PG-1. It also suggests that guanidinium-phosphate complexation to be the driving force for 
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pore formation. In chapter 7, the effects of membrane insertion on Arg dynamics were 

studied by measuring C-H bond order parameters, chemical shift anisotropy (CSA) scaling 

factors and 1H rotating-frame spin-lattice relaxation times (T1ρ). Different dynamics were 

observed between the β-strand region and the β-turn region, which is attributed to PG-1 

aggregation and peptide-lipid interaction. Finally, chapter 8 examines the effects of 

guanidinium-phosphate hydrogen-bonding on the membrane bound structure and 

antimicrobial activity of PG-1 by studying the insertion and dynamics of an Arg-

dimethylated PG-1 mutant in anionic lipid bilayers. The mutant was found to adopt an in-

plane orientation and undergo fast uniaxial rotation, which differs dramatically from the rigid 

transmembrane wild-type PG-1. The weakened guanidinium-phosphate hydrogen bonding 

prevent PG-1 insertion and oligomerization, and thus change the membrane-disruptive 

mechanism of the mutant to an in-plane diffusion model, which is less potent than the 

toroidal pore mechanism.   

 

1.5 Copyright Permission 

 

Chapters 3, 4, 5, 6, 7 and 8 are reprints of published papers. Permissions have been 

obtained from the following publishing groups. 
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Chapter 2 

Material and Methods 
 

2.1  Sample Preparation 

 

2.1.1  Amino Acid Protection 

 

Procedures for Fmocing Amino Acid 

In a 250 ml flask, 2 mmol amino acid (Glycine, Valine or Leucine) with 30 mL 

dioxane was added. 3 eq. (0.64 g) of sodium carbonate dissolved in 25 mL water was added 

to the flask. The mixture was stirred in the ice bath. At around 5˚C, 1.1 eq (0.75 g) Fmoc-

OSu in 30 mL 1:1 dioxane/acetone was added drop-wise over 15 minutes with a glass 

dropper. The mixture was kept stirring for 1 hour in the ice bath. After 1 hr, the ice bath was 

removed and reactants were allowed to warm to room temperature overnight while stirring. 

After overnight, water (~50 ml, enough to double the volume of the solution) was added and 

the residual Fmoc-OSu was extracted with ethyl ether (2×30 mL). To the aqueous layer 0.2 

M HCl solution was added until the pH is ~2 as tested by pH paper. A large amount of white 

precipitates (Fmoc amino acid product) appeared. The product was extracted with ethyl 

acetate (3×50 mL) from the mixture. The organic layers (about ~150 mL) were combined 

and dried over sodium sulfate. The solution was filtered and the ethyl acetate solvent was 

removed in vacuo. The product was lyophilized for 12 h to remove any residual solvents. The 

purity was checked with 1H solution NMR. The product was dissolved with CDCl3 or d6-

DMSO. There was very little or no 1H peak at ~ 2.7 ppm (Fmoc-OSu). The yield was around 

80–90%. The products are white or slightly yellow powder. Fig. 2.1 shows the 1H solution 

spectra of Fmoc-Val in CDCl3, Fmoc-[U-13C, 15N]Gly and Fmoc-[ U-13C, 15N]Leu in d6-

DMSO. 
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Figure 2.1. 1H solution spectra of Fmoc-Val standard in CDCl3 (a), Fmoc-[U-13C, 15N]Gly (b) and Fmoc-[ U-
13C, 15N]Leu (c) in d6-DMSO. Asterisks (*) indicate solvent peaks. 1H peaks (~2.7 ppm) of residual Fmoc-Osu 

are very small. 1H peaks of Gly and Leu split into doublet due to the 1H-13C J-coupling from the uniform 

labeling.    

 

Procedures for Trityl Protection of Histidine  

Before the Fmoc protection, Histidine side chain has to be trityl (Trt) protected [1] to 

prevent the side chain Fmocing. 10 mmol (1.55 g) Histidine and 15 mL CH2Cl2 was added in 

a 100 mL three-neck flask and the suspension was stirred. The flask was connected with a 

water condenser, and the whole system was blown with N2 for 15 min. A balloon was used 

on the top of the condenser to seal the system under N2 atmosphere. All the open connectors 

were sealed with rubber stoppers. A glass syringe was used to add ~5 mL CH2Cl2 to 

compensate the loss during N2 blowing. Then 10 mmol (1.21 mL) Me2SiCl2 was added to the 

flask. The system was refluxed for 4 h. Then 20 mmol (2.79 mL) Et3N was added and the 

reflux continued for 15 min. The reflux was stopped and another 10 mmol (1.39 mL) Et3N 

was added. A solution of 10 mmol (2.79 g) Trt-Cl in 10 mL of CH2Cl2 was added and the 

mixture was under stirring at the room temperature for 2 h. Then the N2 protection was 
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released and an excess of MeOH was added. The solvent was removed in vacuo. Water was 

used to dissolve the residue and the pH was adjusted to 8–8.5 by dropwise addition of Et3N 

(or 10% Na2CO3). Et2O was added to the resulting slurry which was shaken well. The 

insoluble component was filtered off with suction, followed by further wash of the solid with 

water and Et2O. An analytical sample was prepared by recrystallization from THF-water 

(1:1). Analytical thin-layer chromatography (TLC) was performed using the solvent mixture 

of 1-butanol, acetic acid and water (4:1:5, the organic phase at the top). Rf is 0.41.  

 

2.1.2  Peptides and Lipids 

 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), and 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphatidylglycerol (POPG) were purchased from Avanti Polar Lipids (Alabaster, 

AL). PG-1 (NH2-RGGRLCYCRRRFCVCVGR-CONH2) was synthesized using Fmoc 

chemistry as previously described [2]. Fig. 2.2 shows schematic structures and the 

assignments for 13C and 1H spectra of three lipids. 
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Figure 2.2. Schematic structures of three lipids: POPC (a), POPE (b) and POPG (c). 13C and 1H spectra of three 

lipids and peak assignments: POPC (d, e), POPG (f, g) and POPE (h, i), correspondingly.  

 

2.1.3  Oriented Sample Preparation 

 

Glass-plate oriented membrane mixtures were prepared using a naphthalene-

incorporated procedure described recently [3]. The peptide was dissolved in TFE or methanol 

and mixed with a chloroform solution of the lipids with the desired molar ratio. The mixture 

was dried under a stream of N2 gas and the dried film was redissolved in a 1:1 mixture of 

chloroform/TFE containing a two-fold excess of naphthalene with respect to the lipids. The 
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solution was deposited on 10 – 30 glass plates with an area concentration of 0.01 – 0.02 

mg/mm2, air-dried for 2 hours and then vacuum dried for 5 hours to remove all solvents and 

naphthalene. About 1 μL of water was added directly to each glass plate, then the sample was 

hydrated indirectly at a relative humidity of 98% over a saturated solution of K2SO4 or 

NaH2PO4 for 1 – 2 weeks. The glass plates were stacked, wrapped in parafilm and sealed in a 

polyethylene bag to prevent dehydration during the NMR experiments. Fig. 2.3 demonstrates 

how the alignment affects the quality of the spectra. Fig. 2.3a shows a 31P static spectrum of a 

reasonable alignment, which provided a good separate-local-field (SLF) 15N-1H/15N 2D 

correlation spectrum (Fig. 2.3c) of a peptide in the oriented sample with well resolved 

crosspeaks. Due to the heat generated by the long period of radio-frequency pulse irradiation 

(~ 18 h for the 2D experiment), the sample dehydrated and the alignment got worse. Fig. 2.3b 

shows a 31P static spectrum after long 2D experiments. The intensity of 90˚ peak (~ 23 ppm) 

increased the linewidth of 0˚ peak (~ -17 ppm) got larger. The worse alignment resulted in 

less resolved crosspeaks in the corresponding 2D spectrum (Fig. 2.3d).    

 

 
Figure 2.3. 31P static spectra and 15N-1H/15N 2D correlation spectra of retrocyclin-2 (RC100b) in DLPC bilayers. 

(a) 31P static spectrum with a good alignment. (b) 31P static spectrum with a poor alignment due to long time 
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pulsing of 2D experiments. (c) 15N-1H/15N 2D correlation spectrum of the well-oriented sample. (d) 15N-1H/15N 

2D correlation spectrum of the same sample with a worse alignment after long 2D experiments.   

 

2.1.4  Unoriented Sample Preparation 

 

Lipids were mixed in chloroform and blown dry under N2 gas. The mixture was then 

redissolved in cyclohexane and lyophilized. The dry lipid powder was dissolved in water and 

subjected to five cycles of freeze-thawing to form uniform vesicles. An appropriate amount 

of PG-1 to reach a desired peptide-lipid molar ratio (P/L) was dissolved in water and mixed 

with the lipid vesicle solution, let stand overnight, then centrifuged at 55,000 rpm for 2.5 

hours. The pellet was packed into a MAS rotor, giving a fully hydrated membrane sample. 

For cryoprotected samples, trehalose equivalent to 20% of the dry weight of the lipids and 

peptide was added after the peptide bound to the vesicles. The mixture stood for overnight 

and was lyophilized to remove the water. The dry sample was packed into a MAS rotor and 

then lyophilized again to remove the residual moisture caught during packing. 

 

2.2  NMR Methodology 

 

2.2.1  Selective Rotational-Echo Dipolar Recoupling (REDOR) 

 

A selective REDOR technique [4] was used to measure the 13C-31P distances between 

uniformly 13C, 15N-labeled Arg residues of PG-1 and lipid headgroups of the membrane. The 

central 13C π pulse is a rotor-synchronized Gaussian pulse centered at the 13C frequency of 

interest. This soft pulse recouples the desired 13C-31P dipolar coupling, but removes the 13C-
13C J-coupling between the 13C on resonance and its directly bonded 13C. The selective pulse 

was divided into ~200 increments (the actual value depends on the spinning speed to make 

sure that the pulse length is a multiple of 50 ns times the number of increment) and the 

Gaussian profile is truncated at 5% at the maximum amplitude. Composite 90˚180˚90˚ pulses 

were applied on the 31P channel to reduce the effect of flip angle errors and enhance the 

distance accuracy [5]. At each REDOR mixing time (tm), a control experiment (S0) with the 
31P pulses off and a dephasing experiment (S) with the 31P pulses on were carried out. The 
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normalized dephasing, S/S0, as a function of tm gives the 13C-31P dipolar coupling. The CO 

data were corrected for the lipid natural-abundance CO signal.  

 
Figure 2.4. Selective CP pulse sequence and the spectra of Fmoc-[U-13C, 15N]Arg(MTR) under 5.5 kHz MAS. 

(a) Selective CP pulse sequence. (b) Gaussian pulse lineshape. The pulse is constructed by 200 steps of small 

square pulses. (c) 13C CP spectrum and Arg assignments. (d) 13C selective CP spectrum with a soft Gaussian π 

pulse on resonance with carbonyl region. The Gaussian pulse length is 363 μs. (e) 13C selective CP spectrum 

with a soft Gaussian π pulse on resonance with Cα. The Gaussian pulse length is 1.45 ms. 

 

A selective cross-polarization (CP) pulse program was used to test the efficiency of 

the Gaussian pulses and to choose the proper pulse length (Fig. 2.4a). After the normal 

Hartman-Hahn 1H-13C CP, 13C magnetization is flipped to z direction by a hard π/2 pulse. 

Then a soft Gaussian π pulse flips only the 13C magnetization on resonance to –z direction 

followed by another hard π/2 pulse to detect. So the resulting spectrum would show the on-

resonance peak with positive intensity on resonance and the off-resonance peak with negative 

intensity. Fig. 2.4. shows the selective CP spectra of Fmoc-[U-13C, 15N]Arg(MTR). A 

relatively short Gaussian pulse (363 μs) inverts both C’ and Cζ of Arg, while a relatively 

long Gaussian pulse (1.45 ms) inverts only Cα. Therefore, the Gaussian pulse can remove 

C’-Cα and Cα-Cβ J-coupling efficiently. The power of the Gaussian π pulses was directly 
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optimized in the REDOR S0 experiment at a very short mixing time to achieve maximum 

intensity of the on-resonance peak of interest.  

 

2.2.2 Dipolar-Chemical Shift Correlation (DIPSHIFT), Double-Quantum-Filtered DIPSHIFT 

(DQ-DIPSHIFT), and Lee-Goldburg Cross-Polarization (LG-CP) 

 

Three techniques have been used to measure the motionally averaged dipolar 

couplings to get information about protein dynamics in the membrane: DIPSHIFT, DQ-

DIPSHIFT and LG-CP. 2D DIPSHIFT experiment [6] with MREV-8 for 1H homonuclear 

decoupling [6] is useful to measure small couplings at low MAS spinning speed (3~5 kHz). 

For very small couplings, DIPSHIFT experiment with dipolar doubling was used [7, 8] to 

increase the precision. The doubled version is only good for separated and specific labels, but 

not for uniform 13C labels due to the interference of directly bonded 13C-13C dipolar 

couplings. For uniformly labeled samples, some 13C sites overlap with lipid peaks. So the 

double-quantum-filtered (DQ) DIPSHIFT experiment [9] is used to suppress the natural 

abundance lipid 13C signals while measuring the peptide dipolar couplings. The DQ filter 

used SPC5 homonuclear dipolar recoupling sequence [10] with typical spinning speed of 4 – 

6 kHz. 2D LG-CP experiment [11, 12] is useful to measure large couplings at high MAS 

spinning speed (8~10 kHz). The scaling factors for the LG-CP sequence and the MREV-8 

sequence are 0.57 and 0.47, respectively.  

 

2.2.3  1H Spin Diffusion 

 
1H Spin Diffusion from Water in Gel-Phase Membrane 

The gel-phase 1H spin diffusion experiment [13] from water to peptide is useful to 

determine the depth of insertion of individual peptide residues. The signal intensities of the 

residues which are close to the surface water rise faster with 1H mixing time. The 

experiments were carried out on PG-1 in DLPC membrane, which were used previously to 

measure the depths of PG-1 residues in the liquid-crystalline (LC) phase by Mn2+ 

paramagnetic relaxation enhancement [14]. The experiments were performed between 230 K 
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and 243 K, such that the water 1H linewidth after a 200 μs T2 filter is 330 Hz [15]. Fixed 1H 

linewidth was chosen to ensure that 1H spin diffusion rates are consistent throughout 

different samples. The pulse sequence is presented in Fig. 2.5a. After the T2 filter, only the 

water 1H magnetization and a small amount of headgroup γ proton signal remains, so that 

without spin diffusion, the 13C spectrum suppresses all peptide and lipid signals except for 

the lipid Cγ signal (Fig. 2.5c). 1H mixing times of 0.25 – 49 ms were then used to detect 

peptide signals that result from spin diffusion from the membrane surface water. 

Representative 1H spin diffusion curves of G2 and (CH2)n sites of DLPC are shown in Fig. 

2.5d. G2 is much closer to surface water than (CH2)n, thus its signal intensity rises faster than 

(CH2)n. The criteria for the choice of temperature are that the 1H T2 of surface water is much 

longer than peptide and lipids, and that the spin diffusion through peptide and lipids occurs 

on the millisecond timescale at optimum temperature. As for the model lipid system, this 

method is good for PC lipids, but not applicable to PE and PG lipids due to the fact that the 

NH3 group and OH groups on PE and PG form hydrogen bonds with water and reduce the 1H 

T2 of surface water.   

 
Figure 2.5. 1H spin diffusion pulse sequences. (a) Gel-phase 1H spin diffusion pulse program. The T2 filter τ is 

200 μs. The mixing time tm is 0.25 – 49 ms. (b) Pulse sequence for 31P-1H correlation experiment with 1H spin 

diffusion. The T2 filter τ is 800 μs. The mixing time tm is 64 – 225 ms. (c) 1H spin diffusion spectrum at short 

mixing time of 1 μs. After the T2 filter, only Cγ signal remains. (d) Representative 1H spin diffusion curves of 

G2 (squares) and (CH2)n (diamonds) sites of DLPC.  
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2D 31P-1H Correlation with 1H Spin Diffusion in the Liquid-Crystalline Membrane 

The 2D 31P-1H correlation experiment with 1H spin diffusion [16] determines the 

insertion state of the peptide. The pulse sequence is presented in Fig. 2.5b. If the crosspeak 

intensity of 31P and lipid (CH2)n rises much faster with 1H mixing time in the membrane-

bound peptide sample than in the pure lipids, it suggests that the peptide is rigid and inserted 

into the bilayers. The 1H spin diffusion mixing time was 64 – 225 ms, and A pre-evolution 
1H T2 filter (0.8 – 2 ms) was used to remove the magnetization on peptides. 1D 13C detected 
1H spin diffusion experiment was conducted to test the effectiveness of the T2 filter, which 

should be long enough to remove the methyl signals from the peptides. The 1H-31P CP 

contact time was 4 ms to get reasonable sensitivity because the lipids are quite mobile. The 
1H chemical shifts of the POPE/POPG membrane were assigned via the well-known 13C 

chemical shifts by a 13C-1H 2D correlation experiment. 

 

2.2.4  Dipolar Correlation Experiments for Measuring Backbone (φ, ψ) Torsion Angles 

(NCCN and HNCH)  

 

NCCN and HNCH are robust methods for measuring the backbone torsion angles (φ, 

ψ) of proteins. The ψ angles of Arg4 and Arg11 were measured using the NCCN technique, 

which correlates the 15Ni-13Cαi and 13COi- 15Ni+1 dipolar couplings to obtain the relative 

orientation of the two bonds [17, 18]. 13Cα-13CO double quantum coherence was excited 

using the SPC-5 sequence [10], and evolves under the REDOR-recoupled 13C-15N dipolar 

interaction [19]. A pair of 13C spectra were collected at each C-N mixing time, and the S/S0 

values of the CO and Cα signals were averaged and plotted as a function of mixing time to 

yield the ψ-angle dependent curve. The φ angles were measured using the HNCH technique, 

which correlates the 1HN-15N and 13Cα-1Hα dipolar couplings [20]. The experiment yields 

HN-N-Cα-Hα angle (φH), which is related to the φ-angle according to φ = φH + 60˚. The 

NCCN and HNCH experiments were conducted at 253 K on the trehalose-protected 

membrane samples and 233 K on the hydrated membrane samples to make sure backbones of 

the peptides are rigid. The typical spinning speed is slower than 6 kHz.  
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2.2.5  Separation of Undistorted Powder Patterns by Effortless Recoupling (SUPER) and 

Recoupling of Chemical Shift Anisotropy (ROCSA) 

 

SUPER [21] and ROCSA [22] are useful techniques for directly obtaining chemical 

shift anisotropy (CSA) powder pattern under MAS. Both are 2D experiments correlating 

CSA powder pattern with isotropic chemical shift. Molecular motion in the membrane can 

reduce the CSA, so these experiments provide dynamic information of the proteins in the 

membrane. The SUPER experiment is suitable for sparsely labeled samples at slow MAS (< 

4 kHz). The ROCSA experiment is suitable for uniformly 13C-labeled samples under faster 

MAS (5 - 10 kHz). The recoupling field strengths are 12.12 times of the spinning speed (νr) 

for SUPER and 4.283 times for ROCSA. The CSA scaling factors are 0.155 and 0.272 for 

SUPER and ROCSA, respectively.     

 

2.2.6  1H Rotating-Frame Spin-Lattice Relaxation Times (T1ρ) 

 
1H T1ρ were measured using a 13C-detected 1H LG spin-lock (LGSL) experiment. The 

use of magic-angle spin lock suppresses 1H spin diffusion so that only the T1ρ of protons 

directly attached to the 13C is detected. T1ρ provides information on the rates of microsecond 

timescale motion. Fig. 2.6 shows the pulse sequence of T1ρ measurement. 

 
Figure 2.6. Pulse sequence for measuring 1H T1ρ.  

 

2.3  Simulation 
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2.3.1  Orientation Calculations of Dipolar Couplings of 15N-1H, 13Cα-1H Vectors and CSA of 
13C’ and 15N in Rigid β-Sheet Peptides in the Membrane 

 

The dipolar couplings of 15N-1H, 13Cα-1H vectors and the CSA of 13C’ and 15N are 

calculated using in-house FORTRAN program. By fitting the experimental data, these 

simulations provide information on the orientation of the peptide in the membrane. The 

program defines a molecule-fixed coordinate system that reflects the β-strand axis and β-

sheet plane geometry and calculates the anisotropic frequencies based on the orientation of 

the magnetic field (B0) in this coordinate system. The z-axis of this reference system, the β-

strand axis, is defined and calculated as the average orientation of an even number of 

consecutive C’i-1-Ni bonds. The local β-sheet plane is defined as the common plane 

containing the z-axis and a specific C=O vector. The tilt angle τ is the angle between this 

strand axis (z-axis) and the B0 field. The ρ angle was defined as the angle between the C=O 

bond of the specific residue and the common plane (y-z plane) formed by the strand axis and 

the B0 field. The molecular bonds necessary for defining the orientations of the 15N and 13C’ 

chemical shift tensors and 15N-1H and 13Cα-1H dipolar tensors, including the N-HN, Cα-H, 

C’-O, C’-N, and N-Cα bonds, were extracted from the PDB coordinates of the peptides of 

interest. We studied PG-1 (1PG1), RTD-1 (1HVZ) and an ideal antiparallel β-hairpin 

structure which was constructed using (φ, ψ) torsion angles of (-137˚, +135˚) for the strand 

residues, and (-45˚, +85˚) and (+155˚, -20˚) for the i+1 and i+2 residues of the β-turn. The 

chemical shifts and dipolar couplings were calculated from the scalar products between B0 

and the respective tensors as B0 is rotated through all combinations of (τ, ρ) angles. The 

typical step size is 1˚. The unique angular range of τ is 0˚ to 180˚, while ρ is sampled over 

the entire 360˚ range. We refer to this β-sheet based program as the relative orientation 

program. Best fits to the experimental spectrum were determined by finding the minimum 

root-mean squared deviation (RMSD) between the experiment and the simulations. 

To accurately visualize the results of the orientation calculation, and to determine the 

orientation of non-ideal β-hairpins, whose sheet axis and sheet plane orientations are ill 

defined, a second Fortran program without an internal β-sheet reference system was used. 
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The program defines the B0 orientation by a polar angle β and an azimuthal angle α in the 

default PDB coordinate system [2]. This program is referred to as the absolute orientation 

program. The best-fit (α, β) angles were converted into the Cartesian coordinates (sinβcosα, 

sinβsinα, cosβ) of a vector from the origin and added to the PDB file. This vector, the bilayer 

normal, was rotated together with the molecule until it was vertical on the screen, thus giving 

the exact orientation of the β-sheet peptide [2].  

 

2.3.2  Simulations of REDOR curves and Gaussian Distribution of the Distances 

 

REDOR curves were simulated using an in-house Fortran program. The distance 

distribution was assumed to consist of Gaussian functions exp(–(r – r0)2/2σ2), where σ is the 

half-width-at-half-maximum and r0 is the center of the Gaussian. The composite REDOR 

curve was the weighted average of the individual single-distance REDOR curves. 

 

2.3.3  Multi-Spin Simulations of REDOR Curves by SIMPSON 

 

The SIMPSON program [23] was used to simulate the REDOR curves considering 

multi-spin situation in 13C-31P distance measurement. Since the lipid-to-peptide ratio is much 

larger than one, it is relevant to consider how inclusion of multiple 31P spins coupled to each 
13C affects the distance results. The input code is shown in Appendix A.  

 

2.3.4  Simulations of DIPSHIFT Data of X-H, X-H2 and X-H3 Dipolar Tensors 

 

DIPSHIFT curves were simulated using an in-house Fortran program. The input 

parameters are different for X-H, X-H2 and X-H3 dipolar tensors. The dipolar tensor is (–

ωXH/2, –ωXH/2, ωXH) for X-H, (–ωXH, 0, ωXH) for X-H2 and 1:3 weighted average of (–ωXH/2, 

–ωXH/2, ωXH) and (–ωXH/6, –ωXH/6, ωXH/3) for X-H3. The input codes are shown in 

Appendix B.  

 

2.3.5  Simulations of HNCH and NCCN Data 
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HNCH and NCCN curves were simulated using in-house Fortran programs. The input 

parameters for HNCH are similar to the DIPSHIFT simulation. The input code for the HNCH 

program is shown in Appendix C. Best fits to the experimental data were evaluated by 

calculating the minimum root-mean squared deviation (RMSD) between the experiment and 

the simulation. 
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Abbreviations  

PG-1: Protegrin-1  

POPC: 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine 

PBS: phosphate buffer saline 

MAS: magic-angle spinning 

LG: Lee-Goldburg  

CP: cross polarization 

PDSD: proton-driven spin diffusion  

WISE: wideline separation 

 

Abstract  

 The aggregation and packing of a membrane-disruptive β-hairpin antimicrobial 

peptide, protegrin-1 (PG-1), in the solid state is investigated to understand its oligomerization 

and hydrogen bonding propensity. Incubation of PG-1 in phosphate buffer saline produced 

well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR linewidths, 
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chemical shifts and by electron microscopy. Two-dimensional 13C and 1H spin diffusion 

experiments using C-strand and N-strand labeled peptides indicate that the β-hairpin 

molecules in these ordered aggregates are oriented parallel to each other with like strands 

lining the intermolecular interface. In comparison, disordered and lyophilized peptide 

samples are randomly packed with both parallel and antiparallel alignments. The PG-1 

aggregates show significant immobilization of the Phe ring near the β-turn, further 

supporting the structure ordering. The intermolecular packing of PG-1 found in the solid state 

is consistent with its oligomerization in lipid bilayers. This solid-state aggregation approach 

may be useful for determining the quaternary structure of peptides in general and for gaining 

insights into the oligomerization of antimicrobial peptides in lipid bilayers in particular.  

 

Introduction 

 Protegrin-1 (PG-1) is a small β-hairpin peptide from porcine leukocytes that has 

potent and broad-spectrum antimicrobial activities 1. Its minimum inhibitory concentrations 

lie in the range of a few micrograms per milliliter, more than two orders of magnitude 

stronger than existing antibiotics such as vancomysin 2. PG-1 carries out this remarkably 

efficient microbicidal function by destroying the cell membranes of the target organisms. Yet 

how the peptide interacts with lipid bilayers on a molecular level, and what properties of the 

amino acid sequence of the peptide endow its potent and selective membrane-disruptive 

ability, remain a mystery. Understanding PG-1 structure can shed light on the structure-

function relationships of a large class of similar β-sheet antimicrobial peptides 3.  

 Using solid-state NMR chemical shift anisotropy and dipolar coupling measurements, 

we recently found that PG-1 is immobilized in POPC bilayers, where the lipid acyl chains 

contain 16-18 carbons, but undergoes rigid-body uniaxial rotation in DLPC bilayers, where 

the lipid chains have only 12 carbons 4. The immobilization in the biologically relevant 

membrane thickness of POPC bilayers suggests that the peptide is aggregated. Using 19F spin 

diffusion NMR, we found that PG-1 is dimerized in POPC bilayers 5. This prompted 

questions pertaining to the dimer structure: are the β-hairpins aligned parallel or antiparallel 

to each other? Which strand of the hairpin forms the dimer interface? Understanding the 

detailed membrane-bound dimer structure, which is essentially determined by intermolecular 
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hydrogen bonding, is important for deciphering the mechanism of action of the peptide. 

Since PG-1 is highly cationic, similar to most antimicrobial peptides 6, the dimer structure 

can also provide useful insights into the energetic driving force for the insertion of PG-1 into 

the hydrophobic membrane.  

 The crystal structures of two β-sheet antimicrobial peptides outside the lipid or 

detergent environments have been determined to understand the oligomerization and 

mechanisms of action of these peptides in the membrane 7,8. It was found that these β-sheet 

peptides form dimers in the crystal, stabilized by a combination of hydrophobic interactions 

and hydrogen bonds. Since the crystal structure of PG-1 is not available, an alternative 

approach for gaining insights into the oligomerization of this peptide in the membrane is to 

create well-ordered and lipid-free peptide aggregates whose intermolecular packing can be 

determined by solid-state NMR. Studying the structure of lipid-free ordered aggregates has 

the practical advantages that it has high sensitivities due to the avoidance of lipid dilution and 

that it does not suffer from the dynamic disorder common to membrane systems. The solid-

state aggregate structure can then be compared with independently determined membrane-

bound oligomeric structure to shed light on the importance of various non-covalent 

interactions and the environment to peptide oligomerization.  

 In addition to antimicrobial peptides, other examples of β-strand peptide 

oligomerization include the amyloid peptide fibrils found in neurodegenerative diseases such 

as the Alzheimer’s disease 9. The packing and high-resolution structure of the Alzheimer’s β-

peptide Aβ1-40 have recently been determined using solid-state NMR 10. Whether PG-1 can 

form similar extended fibrils is not obvious, since the 18-residue disulfide-linked peptide has 

a much smaller shape anisotropy than typical amyloid-forming peptides, making the free 

energy reduction of oligomerization less significant than the longer β-strand peptides. The β-

hairpin fold of PG-1 also presents an additional degree of complexity and novelty to the 

oligomerization: since the two strands of the hairpin share intramolecular hydrogen bonds in 

the plane of the β-sheet, aggregation can occur either with like strands or unlike strands 

lining the intermolecular interface.  

 Two general NMR strategies are available for determining the oligomeric structure of 

peptides. The first involves distance measurements on site-specifically labeled samples 11-13. A 
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number of solid-state NMR techniques already exist for measuring site-specific distances 

with high accuracy 14,15. However, the success of this approach depends crucially on the 

labeling positions, otherwise one may not be able to extract measurable distances even for 

well packed molecules. The second approach bypasses this difficulty by increasing the 

number of labeled sites in the peptide, and uses more qualitative methods such as spin 

diffusion 16 to determine the proximity of spins between different molecules 17,18.  

 In this work, we show that β-hairpin PG-1 can indeed form ordered aggregates on the 

tens-of-nanometer scale by suitable solution incubation, and we have determined the 

molecular packing and alignment in these aggregates using 2D 13C and 1H spin diffusion 

NMR. Several residues in PG-1 are uniformly labeled in 13C and 15N. Distance-dependent 
13C and 1Η spin diffusion produces cross peaks in the 2D spectra whose intensities provide 

semi-quantitative constraints on the intermolecular distances. In this way, we have 

determined both the identity of the β-strand lining the intermolecular interface and the 

mutual alignment of the strands.  

 

Materials and Methods 

 Uniformly 13C, 15N-labeled Gly, Leu, Phe, and Val were purchased from Isotec 

(Miamisburg, OH) and Cambridge Isotope Laboratory (Andover, MA) and converted to 

Fmoc derivatives by Synpep Corp. (Dublin, CΑ). PG-1 (NH2-RGGRLCYCRRRFCVCVGR-

CONH2) was synthesized using Fmoc solid-phase peptide synthesis protocols and purified by 

HPLC as described previously 19. The labeled amino acids were incorporated at residues F12, 

V14 and G17 on one sample, and G3 and L5 on another sample (Figure 3.1).   

 

Preparation of PG-1 samples  

 Ordered PG-1 aggregates were prepared by dissolving the purified and lyophilized 

peptide in pH 7 phosphate buffer saline (PBS) containing 10 mM phosphates and 100 mM 

sodium chloride. The concentration of the peptide was typically 2-3 mM. The solution was 

incubated at room temperature for 2-3 weeks with gentle shaking. The solution was then 

centrifuged and the precipitate was collected and dried for ~8 hours before being packed into 

NMR rotors for magic-angle spinning (MAS) experiments. Mixed aggregates and 20% 
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diluted aggregate samples were prepared by co-incubating appropriate amounts of the 

starting compounds in the PBS solution. The untreated PG-1 samples were taken directly 

from the purified and lyophilized peptide without solution incubation.  

 

 
Figure 3.1. Schematics of possible modes of packing of the β-hairpin peptide PG-1. (a) NCCN parallel packing. 

(b) NCCN antiparallel packing. (c) NCNC parallel packing. (d) NCNC antiparallel packing. Colored residues 

indicate uniformly 13C, 15N-labeled residues used in this study. Dashed lines indicate expected short 

intermolecular distances.  

 

Solid-state NMR experiments 

 NMR experiments were carried out on a Bruker (Karlsruhe, Germany) DSX-400 

spectrometer operating at a resonance frequency of 400.49 MHz for 1H, 100.70 MHz for 13C 

and 40.58 MHz for 15N. A triple-resonance MAS probe equipped with a 4 mm spinning 

module was used for the experiments. Low temperature experiments were conducted by 

cooling the bearing air through a Kinetics Thermal Systems XR air-jet sample cooler (Stone 

Ridge, NY). The temperature was maintained within ±1 K of the desired value and the 



www.manaraa.com

 37

spinning speed was regulated to within ±3 Hz. Typical 90°pulse lengths were 5 μs for 13C 

and 15N and 3.5-4.0 μs for 1H. 1H-13C and 1H-15N cross-polarization (CP) contact times were 

0.7 ms and 1 ms, respectively. Typical recycle delays were 2 s. 13C and 15N chemical shifts 

were referenced externally to the α-Gly 13C’ signal at 176.4 ppm on the TMS scale and the 

N-acetyl-valine 15N signal at 122.0 ppm on the NH3 scale, respectively. Secondary shifts 

were calculated after converting the random coil chemical shift values 20 onto the same scales.  

2D 1H-driven 13C spin diffusion (PDSD) and 1H spin diffusion (CHHC) experiments 

were carried out at a spinning speed of 5.4 kHz to minimize sideband overlap and to avoid 

rotational resonance effects 15 between directly bonded 13C labels. A ω1 spectral window of 

20 kHz and a maximum t1 evolution time of 11.2 ms were used. The mixing time τSD was 

400 ms for 13C spin diffusion and 200 μs for 1H spin diffusion. For the CHHC experiment, a 

short 13C-1H CP contact time τCP of 120 μs was used before and after the 1H mixing period to 

ensure site-specific detection of the 1H-1H distances. The short τSD for the CHHC experiment 

minimizes the relay mechanism for strong cross peaks 21.  

 The 2D wide-line separation (WISE) experiment 22 was used to measure 1H–1H 

dipolar couplings in various PG-1 samples. After 1H evolution under 1H–1H and 1H–13C 

dipolar couplings for a maximum of 0.13 ms, the 1H magnetization is transferred site-

specifically to 13C by a 200 μs Lee–Goldburg (LG) CP period 23,24.  

 13C–1H dipolar couplings between directly bonded C–H spins were measured using 

the 2D LG–CP experiment 25. The evolution time (t1) is the LG-CP contact time, during 

which 1H spin diffusion is suppressed by the magic-angle spin lock. At short contact times 

(< 1 ms), only directly bonded 13C–1H dipolar couplings are observed. 13C detection during t2 

resolves these 13C-1H couplings according to the 13C isotropic chemical shifts. The spinning 

speed was 10 kHz and the maximum t1 was 2.56 ms. To achieve polarization transfer, the 

first sideband matching condition, ω1C = ωeff,H − ωr, was used, where ω1C is the 13C spin-lock 

field strength and ωeff,H is the 1H effective spin-lock field strength. Due to the short 1H T1ρ 

values, which make it difficult to measure small C–H couplings, we used a constant-time 

version of the experiment where a variable 1H LG spin-lock period was added before CP to 

make the total 1H spin-lock time constant 24,26.  
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 1H rotating-frame spin–lattice relaxation times (T1ρ) were measured using a 13C-

detected 1H LG spin-lock experiment. Again, the use of magic-angle spin lock suppresses 1H 

spin diffusion so that only the T1ρ of protons directly attached to the 13C is detected. The 1H 

spin-lock field strength was 70 kHz.  

 

Electron microscopy 

  Aliquots of incubated PG-1 solutions were applied to formvar coated nickel grids. 

After adsorption for ~2 minutes, the excess fluid was wicked off and the samples were 

negatively stained by applying a drop of 1% phosphotungstic acid (PTA; pH 6.2) for <1 

minute. Excess fluid was wicked off, and grids were air-dried. TEM images were collected 

using a JEOL 1200EX II scanning and transmission electron microscope (Japan Electron 

Optics Laboratory, Peabody, MA) at 80 kV and digitally collected with a Megaview III 

camera and SIS Pro software (Soft Imaging Systems, Inc., Lakewood, CO).  

  

Results  

 Figure 3.1 shows a schematic diagram of the possible modes of intermolecular 

packing of the β-hairpin PG-1. For simplicity, only two molecules are shown in each model, 

but the pattern is expected to repeat in a well-ordered aggregate on the tens of nanometer 

scale. In addition to the possibilities of parallel and antiparallel alignment, the β-hairpins can 

arrange themselves either with the like strand facing each other, NCCN, or with the unlike 

strands facing each other, NCNC. This results in four distinct packing motifs. These different 

modes of packing can be distinguished with suitably labeled peptides. If the peptide is 

labeled solely on one strand, then the presence of intermolecular cross peaks will prove the 

existence of the like-strand NCCN packing. If such cross peaks are absent, and NCNC 

packing is suspected, then a mixture of N-strand labeled and C-strand labeled peptide should 

give rise to intermolecular cross peaks. To determine whether the strands align in a parallel 

or antiparallel fashion, the labeling positions on each strand should include both ends. Figure 

3.1 highlights the labeled residues in two PG-1 samples: one incorporates uniformly 13C, 15N-

labeled F12, V14 and G17 (red), while the other contains uniformly labeled G3 and L5 (green). 

The figure also shows the short intermolecular distances expected for each packing motif 
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(dashed lines): F12-V14 for NCCN parallel packing (a), F12-G17 for NCCN antiparallel 

packing (b), G17-L5 and possibly V14-L5 for NCNC parallel packing (c), and F12-G3, V14-G3 

and V14-L5 for NCNC antiparallel packing (d).   

 

 
Figure 3.2. TEM images of PG-1 aggregates incubated from the PBS solution. The aggregates are ~100 nm 

long and ~10 nm wide.  

 

Preparation and characterization of ordered PG-1 aggregates 

 To obtain well-ordered PG-1 aggregates, we incubated the peptide in PBS solution 

for an extended period of time with gentle agitation. Representative TEM images of the 

resulting aggregates (Figure 3.2) show a network of strands that are ~10 nm wide and ~100 

nm long. These are shorter and thicker than the amyloid fibrils of Aβ peptides 10 and distinct 

in morphology. To assess the local order and secondary structure of the aggregates on the 

sub-nanometer length scale, we compared the 13C and 15N linewidths and chemical shifts of 

the incubated and untreated peptide. Figure 3.3(a-b) shows the 13C CP-MAS spectra of [U-

F12, V14, G17] PG-1 in the two different states. Several changes are observed. First, the 

spectral resolution is much enhanced by incubation: for example, V14 Cα and F12 Cα became 

much better resolved, and the C’ peak narrowed. Second, the Cα and C’ peaks in the PG-1 

aggregate shifted upfield compared to the untreated peptide, while the resolved Val Cβ 

shifted downfield. Based on the known 13C secondary shifts of proteins 27,28, these indicate 

that the incubation procedure makes the β-strand conformation of PG-1 more ideal. In 

comparison, the N-strand labeled peptide, [U-G3, L5] PG-1, showed less pronounced 
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chemical shift and linewidth differences between the incubated and the untreated peptide, 

suggesting that incubation has less influence on the N-strand structure than the C-strand.  

 

 
Figure 3.3. (a-b) 13C MAS spectra of (a) untreated and (b) aggregated [U-F12, V14, G17] PG-1. (c-d) 15N MAS 

spectra of (c) untreated and (d) aggregated [U-F12, V14, G17] PG-1.  

 

 Similar to the 13C spectra, the 15N CP-MAS spectra of [U-F12, V14, G17] PG-1 show 

pronounced line narrowing and chemical shift changes for the aggregate sample. The most 

significant line narrowing occurs at G17 15N, while F12 undergoes the largest chemical shift 

change, ~8 ppm upfield compared to the untreated peptide. Since this change is larger than 

the typical 15N secondary shift range of Phe 27, we suspect that it results from the location of 

Phe 15N at the β-turn, whose chemical shift trend is not as well represented in the protein 

database as the canonical α-helix and β-sheet structures.  

 Figure 3.4 summarizes the linewidths (a) and 13C isotropic shift (b) differences 

between the aggregated and untreated PG-1. The aggregate sample exhibits narrower 

linewidths and stronger β-sheet secondary shifts for most resolved sites, especially for the C-

strand residues. For the untreated PG-1, residues in the middle of the strands such as V14 and 

L5 have narrower lines than terminal residues such as G17. The residue experiencing the most 

significant ordering is F12, whose Cα and Cβ linewidths both decreased, while the terminal 
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G17 Cα showed slightly increased disorder in the aggregate. Thus, the β-turn region of the 

peptide is most strongly structured by incubation. Taken together, the NMR chemical shifts 

and the microscopy data indicate that the PG-1 aggregates prepared by solution incubation 

are well ordered on the tens of nanometer scale but do not have the micron-length order 

typical of amyloid fibrils. Since the purpose of this study is to determine the molecular-level 

packing and hydrogen bonding of PG-1, the nanometer-scale order evident from the NMR 

linewidths and chemical shifts is sufficient for further analysis using 2D 13C correlation 

experiments.  

 

 
Figure 3.4. (a) 13C and 15N full widths at half maximum (FWHM) of untreated (filled) and aggregated (open) 

PG-1. Smaller linewidths indicate a more ordered conformation. (b) 13C secondary shifts of untreated (filled) 
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and aggregated (open) PG-1, calculated as Δobs – Δrc, where Δrc are the random-coil chemical shifts. Negative 

Cα and C’ secondary shifts and positive Cβ secondary shifts indicate a stronger β-sheet conformation.  

 

Packing motif of PG-1 aggregates 

 To determine the packing of PG-1 β-hairpins in the ordered aggregate, we carried out 

2D 1H-driven 13C spin diffusion (PDSD) experiments. Figure 3.5 shows the spectra of [U-F12, 

V14, G17] PG-1 as 100% labeled aggregates (a), 20% diluted aggregates (b), and untreated 

100% labeled peptide (c). A mixing time of 400 ms was used in all experiments to achieve 

complete exchange. The spectrum of the 100% PG-1 aggregate (Figure 3.5a) shows 

significant cross peaks between F12 and V14 such as α-α, α-β, and α-γ. These immediately 

suggest that the C-strand of one β-hairpin packs closely with another C-strand, causing 

intermolecular spin diffusion. There are no visible V14 – G17 cross peaks and only a weak 

F12-G17 α-α peak, suggesting that the two C-strands are mainly aligned in a parallel fashion. 

Since the G17α signal is broad and partially overlaps with the F12β peak at room temperature, 

we carried out the 2D PDSD experiment on the same sample at 253 K, when the G17α 

intensity is stronger and better resolved. Under this condition, the F12α-G17α cross peak 

decrease even further, about half the intensity of the room-temperature peak (Table 3.1), 

confirming that the F12-G17 α−α distance is long.  

 To rule out the possibility that the observed F12-V14 cross peaks are intramolecular, 

we measured the 2D spectrum of a 20% diluted PG-1 aggregate sample, prepared by co-

dissolving 20% labeled peptide with 80% unlabeled peptide in the incubation buffer. Dilution 

removes intermolecular 13C-13C spin diffusion, so that any inter-residue cross peaks in the 

spectra must result from intramolecular spin diffusion. Figure 3.5b shows the 2D spectrum of 

this diluted sample. Indeed, the F12-V14 cross peaks are either significantly attenuated or 

disappeared. The only remaining strong cross peaks are intra-residue ones, confirming that 

the three labeled residues are sufficiently separated along the β-strand not to cause 

intramolecular 13C spin diffusion within 400 ms.  

 To determine whether the NCCN parallel packing of the PG-1 aggregate is 

specifically caused by incubation, we measured the 2D spectrum of the untreated peptide. 

The spectrum (Figure 3.5c) shows much weaker F12-V14 cross peaks but a stronger F12-G17 α-
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α peak. These indicate that in the absence of incubation, PG-1 does not adopt any 

preferential alignment in the solid state, but has a combination of parallel and antiparallel 

alignments. The fact that the F12-G17 α-α peak is visible while V14-G17 cross peaks are not 

suggests that it is easier for the two ends of the β-hairpin to contact each other than for the 

peptide to align in an out-of-registry fashion, which is necessary for forming V14-G17 contacts.  
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Figure 3.5. 2D 1H-driven 13C spin diffusion spectra of [U-F12, V14, G17] PG-1. (a) 100% labeled aggregates. (b) 

20% labeled aggregates. (c) 100% labeled but untreated peptide. For each 2D spectrum, the 1D cross sections 

through the F12α (top row) and V14α (bottom row) slices are shown on the right, where inter-residue cross peaks 

are indicated in bold.  

 

 Since cross peaks in the long-mixing-time PDSD experiment can arise from both 

direct and relay transfer, we carried out a 1H spin diffusion experiment (CHHC) with a short 

τSD of 200 μs 18,21 to verify the direct nature of the intermolecular F12α-V14α contact. It has 

been shown that within a τSD of ~200 μs, strong cross peaks in the CHHC spectrum reflect 

direct 1H-1H distances of within ~3 Å 18,21. Figure 3.6 shows the CHHC spectra of aggregated 

(a) and untreated (b) PG-1. The F12-V14 Hα-Hα cross peak is strong in the aggregate but is 

absent in the untreated peptide. In fact, the inter-residue α-α cross peak in the aggregate is 

higher than some of the intra-residue cross peaks such as Vα-Vγ (see 1D cross sections in 

Figure 3.6c). Compared to the highest intra-residue cross peak, Fα-Fβ, which has a distance 

of ~2.5 Å, the F12α-V14α peak intensity is ~70%, strongly suggesting a direct F12α-V14α 

distance of ~3 Å.  

 If the NCCN packing motif is correct, then there should be N-strand to N-strand 

interfaces in the PG-1 aggregate in addition to the C-strand to C-strand interfaces. To test this, 

we measured the 2D 13C spin diffusion spectrum of the N-strand labeled aggregate, [U-G3, L5] 

PG-1 (Figure 3.7a). The spectrum shows well-resolved and clearly visible G3-L5 C’-α and 

C’-Cγ peaks, indicating the existence of short intermolecular distances. Again, the 

contribution of intramolecular spin diffusion is negligible based on the 2D spectrum of a 20% 

diluted sample (Supporting Information). Thus, the N-strand does form hydrogen bonds with 

another N-strand and in a parallel fashion. However, the cross peaks of the peptide aggregate 

are not significantly stronger than those of the untreated peptide (Table 3.1), suggesting that 

the N-strand is not as tightly packed as the C-strand, or that the N-terminus is more 

disordered than the C-terminus in the aggregate.  

 The presence of the NCCN packing does not in itself rule out the alternative NCNC 

packing. To determine if the ordered PG-1 aggregate contains a mixture of NCCN and 

NCNC packing motifs, we prepared an equimolar mixture of N- and C-strand labeled PG-1 
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aggregates. If NCNC packing is present, then cross peaks between the N-strand residues on 

one molecule and the C-strand residues on another molecule are expected. The 2D spectrum 

of this mixture is shown in Figure 3.7b. No N-strand to C-strand cross peaks such as V14-L5 

(dashed circles) and V14-G3 are detected. The only visible intermolecular cross peaks are the 

F12-V14 peaks due to NCCN parallel packing. These F12-V14 peaks are about a factor of 2 

weaker than the C-strand sample (Table 3.1), consistent with the 1:1 molar ratio of the two 

labeled peptides. Thus, NCCN parallel packing is the sole repeat motif in the ordered PG-1 

sample.  

 

 
Figure 3.6. 2D CHHC spectra of (a) aggregated and (b) untreated [U-F12, V14, G17] PG-1. (c) V14 Cα cross 

section for the aggregated (top) and untreated (bottom) peptide. (d) F12 Cα cross section for the aggregated (top) 

and untreated (bottom) peptide. Strong V14-F12 cross peaks are observed only in the aggregate sample.  
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Figure 3.7. 2D 1H-driven 13C spin diffusion spectra of (a) 100% labeled [U-G3, L5] PG-1 aggregates, and (b) 

1:1 mixture of [U-G3, L5] PG-1 and [U-F12, V14, G17] PG-1 aggregates. Inter-strand cross peaks such as V14-L5 

(dashed circles) are absent in (b).   

 

 Table 3.1 lists the normalized cross peak intensities of the 100% N- and C-strand 

labeled PG-1 aggregates and their untreated equivalents, and of the 1:1 mixture. The cross 

peak intensities (IAB and IBA) were normalized to the diagonal peaks (IAA and IBB) according 

to I = IAB + IBA( ) (IAA + IBB) , and the uncertainties were propagated accordingly from the 

noise of the 2D spectra. It can be seen that the ordered PG-1 aggregates show significantly 

stronger C-strand cross peaks than the untreated peptide in both the PDSD and CHHC 

spectra, while the N-strand cross peaks have more comparable intensities between the two 

samples. The F12-V14 cross peak intensities in the mixed aggregate are about half the 
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intensities of the pure C-strand aggregate, consistent with the fact that only 50% of the C-

strand labeled PG-1 is packed next to another C-strand labeled peptide.  

 
Table 3.1. Cross peak intensities (IAB and IBA) of aggregated and untreated PG-1, normalized with respect to the 

diagonal peaks (IAA and IBB) according to I = IAB + IBA( ) (IAA + IBB) a. Uncertainties were propagated from 

the peak intensities and the noise of the 2D spectra.  

Cross peaks C-strand aggregate N-strand 

aggregate 
Untreated peptide Mixed 

aggregate 

  PDSD CHHC PDSD PDSD CHHC PDSD 

α−α 0.256±0.012 0.412±0.032 NAb 0.212±0.018 0.192±0.024 0.146±0.010 

α−β 0.270±0.014 0.148±0.022 NA 0.198±0.024 0.062±0.026 0.122±0.010 

α−γ 0.290±0.010  0.108±0.026 NA 0.120±0.006 0.050±0.014 0.170±0.006 

β−α 0.200±0.022 0.256±0.046 NA 0.088±0.028 0.080±0.032 0.190±0.020 

β−β 0.254±0.026 0.124±0.030 NA 0.216±0.040 0.084±0.038 0.142±0.024 

 

 

F12-

V14 

β−γ 0.182±0.012 0.148±0.036 NA 0.066±0.008 0.038±0.016 0.148±0.010 

F12 α−β 0.506±0.020 0.596±0.038 NA 0.380±0.040 0.460±0.036 0.282±0.012 

α−β 0.782±0.022 0.422±0.028 NA 0.844±0.026 0.412±0.028 0.582±0.018 

α−γ 0.730±0.012 0.272±0.034 NA 0.682±0.008 0.320±0.014 0.566±0.010 

 

V14 

β−γ 0.798±0.014 0.428±0.026 NA 0.608±0.008 0.428±0.016 0.630±0.010 

F12-

G17 
α−α 

0.186±0.018 

(0.108±0.022,c) 
0.158±0.028 NA 0.238±0.022 0.102±0.022 NA 

C’−α NA NA 0.086±0.010 0.086±0.008 NA NA  

G3-L5 
C’−γ NA NA 0.114±0.006 0.134±0.008 NA NA 

a: For pure unmixed samples, intensities below ~0.200 are weak cross peaks reflecting long-range distances.  
b: Not applicable.  
c: Measured at 253 K.   
 

Segmental mobility of PG-1 aggregates 

 The 13C linewidths of the untreated and aggregated PG-1 samples (Figure 3.4) 

indicate that the F12 at the β-turn experiences the most significant line narrowing upon 
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aggregation, while the G17 Cα signal broadened rather than narrowed, suggesting chain-end 

disorder in the aggregate. To determine the origin of the order and disorder in the aggregate, 

we measured the 1H-1H dipolar coupling, 13C-1H dipolar coupling, and 1H T1ρ of untreated 

and aggregated PG-1. These dynamic parameters are resolved by the 13C isotropic shifts and 

the use of spin-diffusion free LGCP. Figure 3.8 shows the 2D 1H WISE spectrum of the 

aggregate (a) and its Phe cross sections (solid lines, b), which are superimposed with the 

cross sections of the untreated peptide (dashed lines). The untreated PG-1 exhibits narrower 
1H widths than the aggregate, indicating larger amplitude motion. Moreover, the mobility 

difference increases down the Phe sidechain. Both PG-1 samples are more mobile than amino 

acid Phe: the latter has an aromatic 1H-1H coupling of 53 kHz, compared to 25 kHz for the 

aggregate sample and 9 kHz for the untreated peptide. Cooling the aggregated PG-1 to 253 K 

increased the 1H-1H couplings but did not completely immobilize the ring (Table 3.2). 

Consistently, the 13C-1H dipolar couplings also show that the Phe ring in the untreated 

peptide undergoes larger-amplitude motion than in the aggregate (Table 3.2). Compared to 

F12, no substantial coupling differences are found at G17 and V14 between the untreated and 

aggregated samples. Taken together, these indicate that incubation immobilizes the hairpin 

tip more significantly than the C-terminus.  
 

Table 3.2. 1H FWHM of the WISE spectra, 13C-1H dipolar couplings and 1H T1ρ values for aggregated and 

untreated PG-1.  

1H FWHM (kHz) 13C-1H coupling (kHz) T1ρ  (ms) 

aggregated untreated aggregated untreated aggregated untreated  Site 

293 K 253 K 293 K 293 K 293 K 293 K 253 K 293 K 

F12 

Cα 

Cβ 

Cδ 

53 

61 

25 

56 

70 

38 

47 

50 

9 

12 

12 

6.3 

11 

11 

3.9 

5.5 

2.1 

1.6 

11 

8.4 

5.4 

3.4 

1.6 

2.0 

V14 

Cα 

Cβ 

Cγ 

48 

30 

11 

52 

38 

13 

50 

30 

8 

12 

6.6 

2.3 

12 

8.6 

4.3 

7.2 

4.1 

5.2 

11 

8.6 

9.1 

6.9 

4.6 

5.8 

G17 Cα 52 66 45 11 11 1.5 6.0 2.0 
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 The 1H T1ρ values of F12 Hα and Hβ increased in the aggregate (Table 3.2), while the 

T1ρ of G17 Hα decreased. These suggest that the broadening of G17 Cα signal in the aggregate 

(Figure 3.3) results from increased microsecond-timescale motions of the C-terminus, which 

interfere with CP, while the opposite occurs at F12 Cα and Cβ, making the β-turn more 

ordered and rigid in the aggregate. 

 

 
Figure 3.8. 1H-1H dipolar couplings of PG-1. (a) 2D WISE spectrum of [U-F12, V14, G17] PG-1 aggregates. (b) 

1D 1H cross sections of untreated (dashed line) and aggregated (solid line) [U-F12, V14, G17] PG-1. (c) 1D 1H 
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cross sections of [U-G3, L5] PG-1 aggregates at 293 K (solid line) and 253 K (dotted line). The backbone 

dynamics are negligibly unaffected by the temperature, indicating that the N-terminal backbone is immobilized 

at room temperature.  

 

Discussion  

 The NMR linewidths and chemical shifts and microscopy images indicate 

unambiguously that well-ordered PG-1 aggregates on the scale of at least tens of nanometers 

can be created by appropriate solution incubation. The fact that these aggregates do not show 

micron-length order may result from a combination of the highly charged nature of the 

peptide and the low aspect ratio of the molecule.  

 The cross peak patterns in the 2D 13C correlation spectra indicate that the β-hairpins 

in the ordered aggregate pack and hydrogen-bond in a parallel fashion with like strands 

facing each other. Both 1H-driven 13C spin diffusion and direct 1H spin diffusion support this 

conclusion. The 13C spin diffusion experiment detects C-C distances up to ~7.5 Å within a 

mixing time of 500 ms, as shown by a recent study of α-spectrin SH3 domain 29, while the 1H 

spin diffusion experiment can detect H-H distances of within ~3 Å in a short τSD of ~200 μs. 

Thus, the absence or weakness of 13C spin-diffusion cross peaks such as F12-G17 (Figure 3.5a) 

and V14-L5 (Figure 3.7b) in the peptide aggregates indicates C-C distances longer than 7.5 Å. 

These rule out the antiparallel packing and the alternate strand packing (NCNC) models. The 

strongest constraint in favor of NCCN parallel packing is the significant F12α-V14α cross 

peak in the peptide aggregate. Although this cross peak in the 13C spin diffusion spectrum 

could arise both from direct and relay transfer, the fact that in the 1H spin diffusion spectrum 

this α−α peak is stronger than most inter- and intra-residue sidechain cross peaks (Table 3.1) 

rules out the possibility of sidechain-mediated relay transfer. In addition, the untreated 

peptide shows clear PDSD intra-residue sidechain cross peaks (Figure 3.5c) but negligible 

F12α-V14α intensity, indicating that relay transfer alone is insufficient to produce backbone 

α−α cross peaks if the distance is large.  

 The fact that the N-strand G3C’-L5α peak is lower than the F12α-V14α peak in the 

PDSD spectra is partly due to the larger isotropic shift difference between C’ and Cα, which 

attenuates 13C spin diffusion. It may also reflect a true looseness of the N-strand interface, 



www.manaraa.com

 51

which is also manifested in the less dramatic line narrowing of the N-strand residues 

compared to the untreated peptide. This looseness may result from the more hydrophilic 

nature of the N-strand due to the presence of an additional Arg residue (R4) in the middle of 

the strand (Figure 3.1). In comparison, the C-terminal strand is almost entirely hydrophobic, 

thus stabilizing the C-strand interface.  

 

 
Figure 3.9. NCCN parallel packing model of PG-1 in the ordered aggregates. Short intermolecular F12-V14 and 

G3-L5 Cα−Cα and Hα-Hα distances are highlighted in red. The N-O hydrogen bonds stabilizing the oligomeric 

structure are shown as black dashed lines.  

 

 Figure 3.9 illustrates the NCCN parallel packing model of PG-1, showing both a C-

strand interface and an N-strand interface. The positions of the neighboring PG-1 molecules 

are adjusted to satisfy hydrogen bond lengths, RN-O, of 2.4 – 3.6 Å 30,31. Since parallel β-
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strands do not have an inversion symmetry, each pair of residues has two different 

internuclear distances across the intermolecular interface. Based on this model, F12 and V14 

have Cα-Cα distances of ~5 Å and 10 Å, the shorter of which is the main contributor to the 

cross peak in the PDSD spectra. Remarkably, a short F12-V14 Hα-Hα distance of ~3.3 Å is 

found, confirming that the strong α−α cross peak in the CHHC spectrum (Figure 3.6a) is due 

to direct polarization transfer. At the N-strand interface, a G3-L5 C’-Cα distance of ~6 Å is 

found, also within the detection limit of 13C spin diffusion. For the NCCN antiparallel 

packing motif yields F12 - V14 Cα-Cα distances of ~13 Å, well beyond the detection limit of 
13C spin diffusion.  

 This NCCN packing model shows the direction of the intermolecular contacts to be 

sideways in the β-hairpin plane rather than perpendicular to the plane. This reflects the fact 

that the sidechains occupy space above and below the β-hairpin plane, which makes it 

difficult to establish close inter-plane backbone contacts. In amyloid fibrils, the typical 

distances between adjacent β-sheet planes are 9 – 10 Å according to fiber diffraction studies 
32,33. Such a large distance is beyond the detection limit of 13C spin diffusion. Moreover, since 

inter-plane packing is not driven by hydrogen bonding, any accidental close contact between 

β-sheet planes would be non-specific in nature; thus the untreated peptide should show 

similarly strong backbone cross peaks as the peptide aggregate if inter-sheet contact were the 

cause of these backbone cross peaks. This is inconsistent with the experimental data.  

 The NCCN parallel alignment of PG-1 in the ordered solid-state aggregate 

determined from these 2D experiments is consistent with the results obtained in the 

membrane 34. There, intermolecular C-H, C-N, and C-F dipolar couplings between site-

specifically labeled residues constrained the PG-1 dimer structure to be parallel with two C-

strands lining the dimer interface. Thus, the PG-1 aggregate formed from solution incubation 

outside the membrane has similar packing and hydrogen bonding to the membrane-bound 

PG-1 oligomer. This suggests that the common driving force for the oligomerization of this 

β-hairpin peptide inside and outside the membrane is hydrogen bonding. This approach of 

preparing ordered aggregates may thus be useful for studying the oligomerization of other 

membrane-active β-sheet antimicrobial peptides whose crystal structures are not available.   
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 It is interesting to note that a solution NMR study of PG-1 in DPC micelles 35 showed 

that the peptide forms antiparallel dimers with the C-strand lining the dimer interface. The 

reason for the different alignment between the micelle environment on the one hand, and the 

aggregate and lipid bilayer environments on the other, is presently unclear. However, since 

detergent micelles are well known to impose curvature strains onto peptides, one possible 

reason for the difference may be the different shape anisotropies of the parallel and 

antiparallel PG-1 dimers. The parallel NCCN packing observed in the aggregate and in the 

lipid bilayer puts six Arg residues at two adjacent β-turns in close proximity, forming a 

strongly amphipathic structure. The electrostatic repulsion between these β-turns may make 

the parallel dimer a bulkier structure than the antiparallel dimer, where the Arg-rich β-turns 

are spaced apart. The compact antiparallel dimer structure may thus be favored in the 

constrained micelle environment, while the parallel packing may be stabilized in the bilayer 

because the stronger amphipathic structure facilitates peptide insertion into the membrane.  

 

Conclusion  

 We demonstrated the preparation and quaternary-structure determination of well-

ordered aggregates of the β-hairpin antimicrobial peptide PG-1. 2D 13C correlation 

experiments mediated by both 13C and 1H spin diffusion showed intermolecular backbone 

cross peaks that are consistent with parallel packing of the β-hairpins, with like strands lining 

the intermolecular interface. The C-strand interfaces in the aggregate are more tightly packed 

and ordered than the N-strand interfaces, which may result from the stronger hydrophobic 

nature of the C-strand. The ordered packing of the aggregate is supported by the reduced 

mobility of the Phe ring at the β-turn compared to the untreated peptide. This is the first time 

a β-hairpin peptide is shown to be able to form ordered aggregates on the length scale of tens 

of nanometers. The hydrogen-bonding propensity of PG-1 in the solid state determined from 

this study sheds light on the oligomerization of this peptide in lipid bilayers, which will be 

presented elsewhere 34.   
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Intermolecular Packing and Alignment in an Ordered β-Hairpin 

Antimicrobial Peptide Aggregate from 2D Solid-State NMR  
Ming Tanga, Alan J. Waring b, and Mei Hong a 

 

 

Figure S3.1. Lack of F12-G17 α−α cross peak in the 100% [U-F12, V14, G17] PG-1 aggregate at 253 K. (a) 1D 13C 

spectrum of the peptide at 293 K. (b) 1D 13C spectrum of the peptide at 253 K. The G17α peak has higher 

intensity and is better resolved from the F12β signal at 253 K. (c) 2D 13C spin diffusion spectrum of the peptide 

aggregate at 253 K with a mixing time of 400 ms. Despite the prominent diagonal G17α peak, the F12-G17 α-α 

cross peak is negligible (dashed circles), confirming that the C-strands are aligned in a parallel fashion in the 

aggregate.  
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Figure S3.2. (a) 2D 13C PDSD spectrum of 20% diluted and untreated [U-G3, L5] PG-1 at 293 K. Negligible G3-

L5 C’-Cα cross peak is observed. (b) PDSD spectrum of the 100% [U-G3, L5] PG-1 aggregate is reproduced 

from Figure 3.7(a), where a clear G3-L5 C’-Cα cross peak is observed.   
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MAS: magic angle spinning  

CP: cross polarization  

CSA: chemical shift anisotropy  
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Abstract  

 The orientation of a β-sheet membrane peptide in lipid bilayers is determined, for the 

first time, using 2D 15N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic β-

hairpin peptide with antibacterial and antiviral activities. We used 2D separated-local-field 

spectroscopy correlating 15N-1H dipolar couplings with 15N chemical shifts to determine the 
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orientation of multiply 15N-labeled retrocyclin-2 in uniaxially aligned phosphocholine 

bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to 

both the tilt of the β-strand axis and the rotation of the β-sheet plane from the bilayer normal, 

and that yield resonance assignment without the need for singly labeled samples. 

Retrocyclin-2 adopts a transmembrane orientation in DLPC bilayers, with the strand axis 

tilted at 20˚±10˚ from the bilayer normal, but changes to a more in-plane orientation in 

thicker POPC bilayers with a tilt angle of 65˚±15˚. These indicate that hydrophobic mismatch 

regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide 

orientation but also to its backbone (φ, ψ) angles. Neither a bent hairpin conformation, which 

is populated in solution, nor an ideal β-hairpin with uniform (φ, ψ) angles and coplanar 

strands, agrees with the experimental spectrum. Thus, membrane binding orders the 

retrocyclin conformation by reducing the β-sheet curvature but does not make it ideal. 31P 

NMR spectra of membranes with different compositions indicate that retrocyclin-2 

selectively disrupts the orientational order of anionic membranes while leaving zwitteronic 

membranes intact. These structural results provide insights into the mechanism of action of 

this β-hairpin antimicrobial peptide.  

 

Introduction 

 The orientation of membrane peptides in lipid bilayers is an important aspect of the 

three-dimensional structure of these molecules. Solid-state NMR spectroscopy is a well-

established tool for determining the orientation of α-helical membrane peptides. The most 

common approach is to measure the 15N chemical shift and 15N-1H dipolar couplings of 

macroscopically oriented peptides bound to lipid membranes (1). These two 15N interaction 

tensors are approximately parallel to the helical axis, thus their frequencies reflect the 

orientation of the helical axis relative to the magnetic field. When the alignment axis is 

parallel to the magnetic field, this is also the helix orientation relative to the bilayer normal. 

To determine the peptide orientation with high angular resolution, 2D separated-local field 

(SLF) spectroscopy correlating the 15N chemical shift with 15N-1H dipolar coupling is 

particularly powerful. Due to the small misalignment between the N-H bonds and the helical 

axis, the 2D SLF spectra of multiply 15N-labeled helical peptides give characteristic wheel-
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like patterns whose positions and sizes are exquisitely sensitive to the tilt angle of the helix 

from the membrane normal (2; 3). The peaks on these wheel patterns follow the helical wheel 

projection in a well-defined fashion, so that they can be assigned readily as long as one of the 

peaks is identified using a site-specifically labeled sample.  

 Compared to advances in the orientation determination of α-helical membrane 

peptides, knowledge about the orientation and insertion of β-sheet peptides in lipid bilayers is 

scarce. Although theoretical analyses of the 2D spectra of β-sheet peptides were given 

recently (4; 5), no experimental study of β-sheet peptide orientation using this 2D approach 

has been reported. The fact that the N-H bonds in β-sheet peptides are perpendicular rather 

than parallel to the strand axis further makes it unclear whether 15N NMR is adequate for 

determining β-sheet peptide orientations.  

 Disulfide-stabilized β-hairpin antimicrobial peptides (6) are promising systems both 

for understanding β-sheet peptide binding to lipid membranes and for testing the applicability 

of the 15N solid-state NMR method. These peptides are potent microbicidal molecules 

present in many animals and plants as part of their innate immune system (7-9). The most 

common mechanism of action of these small cationic peptides is the disruption of the 

microbial cell membrane. D-enantiomers of these peptides show similar activities as their L-

counterparts, indicating that the targets of these peptides are the achiral lipids of the 

membrane rather than protein receptors in the membrane or inside the cell (10; 11).  

 Retrocyclin-2 is a circular 18-residue antimicrobial peptide encoded in the human 

genome by a θ-defensin pseudogene (12). It exhibits antibacterial activities and inhibits HIV 

entry into human cells (13-15). Similar to the monkey homolog, rhesus θ-defensin (RTD) 

(16), retrocyclin-2 has a β-hairpin structure stabilized by three cross-strand disulfide bonds. 

Its five Arg residues and the hydrophobic residues are distributed at nearly identical positions 

as in RTD-1 (Fig. 4.1). Thus, the solution NMR structure of RTD-1 to a good approximation 

is applicable to retrocyclin-2. Retrocyclin-2 has a high affinity to carbohydrate-containing 

cell surface molecules (17) and is localized on the cell membrane based on confocal 

microscopy images. However, the high-resolution structure of the peptide bound to the lipid 

bilayer is not yet known.  
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 In this work, we report the orientation determination of multiply 15N-labeled 

retrocyclin-2 using 2D 15N dipolar-shift correlation NMR combined with macroscopic 

alignment of lipid membranes. We show that the 2D spectra of β-hairpin peptides are 

extremely sensitive to the orientations of the β-strand axis and β-sheet plane relative to the 

bilayer normal. Moreover, the spectral patterns yield non-degenerate values of the orientation 

angles, so that no site-specific-labeling-based assignment is necessary to resolve angular 

ambiguity. Experimental spectra indicate that retrocyclin-2 is transmembrane in DLPC 

bilayers but changes to a more in-plane orientation in POPC bilayers. Further, the 2D spectra 

are sensitive to the backbone (φ, ψ) angles. Neither a bent conformation present in solution 

nor an ideal cyclic conformation with coplanar strands agrees with the experimental data. 

These provide the first insights into the conformation and orientation of this class of cyclic β-

hairpin peptides in the membrane.  
 

 
Figure 4.1. Amino acid sequences of retrocyclin-2 and RTD-1. The 15N labeled residues in retrocyclin-2 are in 

bold.  

 

Materials and Methods 

Materials 

 All lipids, including DLPC, POPC, POPE, and POPG, were purchased from Avanti 

Polar Lipids (Alabaster, AL) and used without further purification. Retrocyclin-2 

(GICRCICGRG ICRCICGR) was synthesized on a 0.25 mmol scale with an ABI 431A 
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peptide synthesizer using FastMocTM chemistry (18). All residues were double coupled to 

insure optimal yield. Gly1, Ile2, Ile6, Gly8, Ile11, Ile15, Gly17 are 15N labeled (Fig. 4.1).  15N-

labeled amino acids were purchased from Cambridge Isotope Lab (Andover, MA) and 

converted to the Fmoc derivatives by AnaSpec Inc. (San Jose, CA). The crude reduced 

peptide was purified by reverse-phase HPLC, oxidized with DMSO buffer, purified again to 

remove unreacted peptide, then cyclized (13). Glass cover slides with a thickness of 0.08 mm 

were obtained from Marienfeld Laboratory and cut to 6  x 12 mm2 rectangles.  

 

Membrane sample preparation 

 Glass-plate oriented membrane mixtures were prepared using a naphthalene-

incorporated procedure described recently (19). The peptide was dissolved in TFE and mixed 

with a chloroform solution of the lipids with the desired molar ratio. The mixture was dried 

under a stream of N2 gas and the dried film was redissolved in a 1:1 mixture of 

chloroform/TFE containing a two-fold excess of naphthalene with respect to the lipids. The 

solution was deposited on 10 – 30 glass plates with an area concentration of 0.01 – 0.02 

mg/mm2, air-dried for 2 hours and then vacuum dried for 5 hours to remove all solvents and 

naphthalene. About 1 μL of water was added directly to each glass plate, then the sample was 

hydrated indirectly at a relative humidity of 98% over a saturated solution of K2SO4 for 1 – 2 

weeks. The glass plates were stacked, wrapped in parafilm and sealed in a polyethylene bag 

to prevent dehydration during the NMR experiments.  

 

Solid-state NMR 

 NMR experiments were carried out on a Bruker DSX-400 spectrometer (Karlsruhe, 

Germany) operating at a resonance frequency of 162.12 MHz for 31P and 40.58 MHz for 15N.  

A static double-resonance probe with a home-built rectangular coil with the dimension of 6 x 

12 x 5 mm3 was used for the oriented membrane samples. The 15N chemical shift was 

referenced to the isotropic signal of N-acetyl-valine at 122 ppm. The 31P chemical shift was 

referenced to 85% phosphoric acid at 0 ppm. The 2D SLF experiments used MREV-8 (20; 21) 

to decouple the 1H-1H dipolar interaction during t1, although other homonuclear decoupling 

schemes are also applicable. The MREV-8 90˚ pulse length was 3.8 μs. A 1H decoupling 



www.manaraa.com

 63

field strength of 50 kHz was used during 15N detection. The 1H-15N CP contact time was 1 

ms. The 2D spectra were acquired using 22-24 t1 slices with a dwell time of 45.6 μs, 

resulting in a maximum evolution time of slightly over 1 ms. 1280 and 3072 scans were 

averaged for each t1 time point for the DLPC and POPC-bound peptide samples, respectively.  

 

Orientation simulations  

 2D 15N-1H/15N correlation spectra were calculated using two FORTRAN programs. 

The first program defines a molecule-fixed coordinate system that reflects the β-strand axis 

and β-sheet plane geometry and calculates the anisotropic frequencies based on the 

orientation of the magnetic field (B0) in this coordinate system. The z-axis of this reference 

system, the β-strand axis, is defined and calculated as the average orientation of an even 

number of consecutive C’i-1-Ni bonds (Fig. 4.2a). We used the six peptide bonds of residues 

2-7 for this purpose. The y-z plane, the local β-sheet plane, is defined as the common plane 

containing the z-axis and a specific C=O vector. The C=O bond of residue 2 was used. The 

tilt angle τ  is between the β-strand (z) axis and the B0 field, while the rotation angle ρ is 

defined as between the y-axis and the projection of B0 onto the x-y plane. ρ = 0˚ indicates 

that B0 is parallel to the β-sheet (y-z) plane. The molecular bonds necessary for defining the 

orientations of the 15N chemical shift and N-H dipolar tensors, including the N-HN, C’-N, and 

N-Cα bonds, were extracted from the PDB coordinates of RTD-1 (1HVZ). The chemical 

shift and dipolar coupling frequencies were calculated from the scalar products between B0 

and the respective tensors as B0 is rotated through all combinations of (τ, ρ) angles. The 

unique angular range of τ is 0˚ to 90˚, while ρ is sampled over the entire 360˚ range. We refer 

to this β-sheet based program as the relative orientation program.  

 To accurately visualize the results of the orientation calculation, and to determine the 

orientation of non-ideal β-hairpins, whose sheet axis and sheet plane are ill defined, a second 

Fortran program without an internal β-sheet reference system was used. The program defines 

the B0 orientation by a polar angle β and an azimuthal angle α in the default PDB coordinate 

system (22). This program is referred to as the absolute orientation program. The best-fit 

(α, β) angles were converted into the Cartesian coordinates (sinβcosα, sinβsinα, cosβ) of a 
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vector from the origin and added to the PDB file. This vector, the bilayer normal, was rotated 

together with the molecule until it was vertical on the screen, thus giving the exact 

orientation of the β-sheet peptide (22).  

 The two FORTRAN programs were checked for consistency by calculating the 

spectra for a transmembrane (τ = 0˚, ρ = 0˚) and an in-plane (τ = 90˚, ρ = 90˚) extended 

strand (φ = ψ = 180˚) using the relative orientation program, then fitting these spectra using 

the absolute orientation program. The best-fit (α, β) angles were then visualized in Insight II 

to confirm that the molecules have the desired orientations.  

 Input 15N chemical shift and N-H dipolar tensors for the simulations were as follows. 

The z-axis of the 15N chemical shift tensor is 17˚ from the N-H bond (23) while the x-axis is 

25˚ from the peptide plane (24). The rigid-limit N-H dipolar coupling was 10 kHz, 

corresponding to a bond length of 1.07 Å. Literature 15N chemical shift principal values of 

(64, 77, 217) ppm (23) were used to simulate the general orientation-dependent spectra of Fig. 

4.2 and Fig. 4.3. To fit the experimental 2D spectra of retrocyclin-2, the chemical shift 

difference between Ile and Gly was taken into account. The principal values were estimated 

from the 15N MAS sideband intensities of unoriented retrocyclin-2 in DLPC bilayers. For Ile, 

the 15N principal values were (75, 76, 221) ppm, while for Gly, the principal values were (42, 

86, 202) ppm. These were used for most of the simulations in Figs. 4, 6, 7, and 8. 

Calculations show that the use of literature 15N chemical shift tensor values did not change 

the best-fit (τ, ρ) angles, but the fit to the experimental spectra is actually somewhat better 

using the standard 15N tensor values.   

 The solution NMR structure of RTD-1 (PDB code: 1HVZ) was used to represent the 

retrocyclin-2 structure. The RTD-1 structure has a significant backbone RMSD of 1.55 Å due 

to dynamic disorder in the middle of the strands (25). As a result, some of the minimum-

energy structures show a substantial curvature of the β-sheet plane. We chose structure 15 to 

represent the straight β-hairpin population and structure 13 to represent the bent hairpin. The 

average (φ, ψ) angles for the strand residues (2-8 and 11-17) in structure 15 are (–103˚, 99˚), 

while the average (φ, ψ) angles for the strand residues in structure 13 are (-66˚, 63˚), which 

deviate significantly from the ideal β-strand geometry.  
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 An “ideal” 18-residue β-hairpin was generated to further assess the sensitivity of the 

2D spectra to backbone conformation. This ideal β-hairpin has uniform torsion angles of (φ = 

-137˚, ψ = 135˚) for the strand residues and (φi = -45˚, ψi = 85˚) and (φi+1 = 155˚, ψi+1 = -20˚) 

for the turn residues.  The turn-residue torsion angles were optimized to make the two strands 

coplanar.  

 Best fits to the experimental spectrum were determined by finding the minimum root-

mean squared deviation (RMSD) between the experiment and the simulations:  
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Here sim
i,dω  and sim

i,CSω  are the calculated dipolar coupling and chemical shift of residue i, 

respectively, while ωd,i
exp  and exp

i,CSω  represent the frequencies of an experimental peak 

closest to the calculated frequencies of residue i. The frequency differences were normalized 

by the rigid-limit anisotropy, δd and δCS, of the interactions. The goodness of fit was assessed 

by comparing the RMSD with the experimental RMS noise, which was obtained by replacing 

ωd,i
sim and ωCS,i

sim  in eq. (1) with frequencies that reflect the read-out uncertainty of each peak. 

Resonance assignment was made after the best fit was found and an experiment peak with 

the frequencies closest to the calculated frequencies of residue i was assigned to residue i.  
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Figure 4.2. (a) Definition of the tilt angle τ and rotation angle ρ in a β-strand peptide. (b) Calculated 2D 15N-
1H/15N correlation spectra as a function of τ and ρ for an 18-residue β-hairpin molecule, using structure 15 of 

RTD-1. The resonances of all 18 residues are shown. Filled and open circles represent the resonances of turn 

and strand residues, respectively.  

 

Results  

 Fig. 4.2b shows the calculated spectra for a range of τ and ρ angles based on the 

RTD-1 structure 15. All 18 resonances are shown. The strand and turn residues are shown as 

unfilled and filled circles, respectively. As expected, the turn residues often give rise to 

outlier peaks in the 2D spectra due to their distinct N-H bond orientations from the strand 

residues, thus they serve as useful identifiers of the peptide orientation. The unique range of 

the ρ angle is 360˚; but for clarity only a 90˚ range is shown. Significant peak dispersion is 

observed in these spectra, both when the strand axis is nearly parallel (e.g. τ = 10˚, ρ = 10˚) 

and when it is perpendicular (e.g. τ = 90˚, ρ = 10˚) to B0. This differs from α-helical peptides, 

which have no dispersion when the helical axis is parallel to the bilayer normal (τ = 0˚) and 

very limited spectral dispersion when τ = 90˚. The frequency dispersion in Fig. 4.2 results 

from both the inherent twist of the β-strand and the presence of the turn residues. The largest 
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spectral dispersion is obtained when (τ, ρ) approach (90˚, 0˚), which corresponds to the case 

where the strand axis is perpendicular to the bilayer normal while the β-sheet plane is parallel 

to the membrane normal. This orientation is unlikely for a small monomeric β-strand peptide 

but possible as part of a β-barrel protein. Fig. 4.2 shows that the transmembrane (τ–>0˚) and 

in-plane orientations (τ = 90˚, ρ = 90˚) have sufficient frequency differences to be 

distinguishable, even though in theory both their N-H bonds are perpendicular to B0. The in-

plane orientation has more limited spectral dispersion, with the peaks clustered at the 90˚ 

edge of both dimensions. Fig. 4.3 shows the calculated spectra for the seven 15N-labeled 

residues in retrocyclin-2. For this subset of signals, the transmembrane (e.g. τ = 10˚, ρ = 10˚) 

and in-plane (τ = 90˚, ρ = 90˚) spectra are even more distinguishable. 

 Fig. 4.2 indicates that the 2D spectra of β-hairpin peptides depend sensitively on both 

the τ and ρ angles. The resonance patterns are much less symmetric than the PISA wheels of 

α-helices, whose shape and position depend primarily on τ but not on ρ. The ρ-angle of a β-

sheet peptide can be uniquely determined without resonance assignment, as long as the 

number of residues is smaller than the periodicity dictated by the β-sheet twist. Such 

periodicity can range from 25 to 108 residues depending on the β-sheet (φ, ψ) angles (4). 

Since typical β-strands have less than 15 residues, this condition is usually satisfied. 

Therefore, from the 2D 15N-1H/15N correlation spectra of β-sheet peptides, non-degenerate 

values of (τ, ρ) angles can be obtained without the need for singly labeled samples for 

resonance assignment, in contrast to α-helices. For β-hairpin peptides, the presence of the 

turn residues further facilitates orientation determination and resonance assignment.  
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Figure 4.3. Calculated 2D 15N-1H/15N correlation spectra for the seven 15N labeled residues in retrocyclin-2. 

The spectra are subsets of those in Figure 4.2. Note the clear difference between the transmembrane (τ = 10˚, ρ 

= 10˚) and in-plane (τ = 90˚, ρ = 90˚) orientations.  
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Figure 4.4. (a) Experimental 2D 15N-1H/15N correlation spectrum of retrocyclin-2 in DLPC bilayers (P:L=1:25). 

The relative volumes of the resolved peaks are indicated. (b) Best-fit spectrum using the measured 15N chemical 

shift principal values of the peptide, which are (42, 86, 202) ppm for Gly and (75, 76, 221) ppm for Ile. Best-fit 

angles: τ = 20˚, ρ = 236˚. Resonance assignment is indicated. (c) Best-fit spectrum using standard 15N chemical 

shift tensor values of (64, 77, 217) ppm (23) for all sites. The same best-fit angles as (b) are obtained, but the 

agreement with the experimental spectrum is better than (c), especially in the Gly8 position. (d) Simulated 2D 

spectrum with τ = 30˚, ρ = 236˚. (e) Simulated 2D spectrum for τ = 20˚, ρ = 226˚. (f) RMSDs between the 

experiment and simulations as a function of (τ, ρ) angles. The minimum RMSD occurs at τ = 20˚, ρ = 236˚ 

(star). 
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 The experimental 2D spectrum of retrocyclin-2 bound to DLPC bilayers (1 : 25 molar 

ratio) is shown in Fig. 4.4a. The spectrum shows five resolved peaks, two of which contain 

overlapping resonances based on the peak volumes. The best-fit spectrum was obtained at 

(τ = 20˚, ρ = 236˚) and shown in Fig. 4.4b along with the assignment. The simulated 

spectrum, calculated using 15N chemical shift principal values estimated from the MAS 

sideband spectrum of the peptide, agrees well with the experimental pattern for all peaks 

except for Gly8, whose chemical shift deviates by ~10 ppm between the two. However, it is 

well known that the Gly 15N chemical shift tensor values are less well defined than the other 

amino acids. Indeed, when standard literature 15N chemical shift tensor values of (64, 77, 217) 

ppm (23) were used in the simulation, much better agreement in the Gly8 position was 

obtained (Fig. 4.4c) while the best-fit angles remain unchanged at (τ = 20˚, ρ = 236˚).  

 To assess the angular uncertainty of the measured orientation angles, we show two 

simulated spectra near the best fit, with τ and ρ each differing by 10˚. Both give spectral 

patterns distinctly different from the experimental spectrum (Fig. 4.4d, e). Fig. 4.4f shows the 

2D RMSD map as a function of (τ, ρ) at 1˚ increments. The global minimum at (τ = 20˚, 

ρ = 236˚) has an RMSD value of 0.26, comparable to the experimental RMS noise (0.20), 

while the two alternative simulations in Fig. 4.4(d-e) have much higher RMSD values of 0.63 

and 0.40, confirming that the (τ, ρ) uncertainties are within ±10˚. Moreover, the 2D RMSD 

contour plot shows a single global minimum, indicating the uniqueness of the angles 

determined due to the multiple frequency constraints available in the spectrum.  

 Fig. 4.5 shows the orientation of retrocyclin-2 in DLPC bilayers. Since the peptide is 

almost completely transmembrane, the plane of the β-sheet is roughly parallel to the bilayer 

normal despite the large ρ angle of 236˚. In other words, the peptide inserts into the 

membrane in a way that encounters low resistance.  

 Since the twenty minimum-energy structures of RTD-1 show considerable variations 

in the curvature of the β-sheet, to assess whether the orientation solution depends on the 

peptide backbone conformation, we carried out further simulations using a bent hairpin 

structure (Fig. 4.6c). Since it was not possible to define a meaningful strand axis and sheet 

plane for this structure, the simulation was carried out using the absolute orientation program. 

The resulting RMSD map between the simulated and the experimental spectra is shown in 



www.manaraa.com

 71

Fig. 4.6a. The best-fit orientation occurs at (β = 88˚, α = 347˚) and has an RMSD value (0.47) 

that is more than twice the experimental uncertainty (0.20), indicating a poor fit. This can be 

seen clearly in the superposition of the experimental and best-fit simulated spectra in Fig. 

4.6b. The lack of a good fit rules out the bent hairpin conformation of retrocyclin-2 in the 

membrane.  

 
Figure 4.5. Retrocyclin-2 orientation in DLPC bilayers. (a) Viewed from the side of the DLPC bilayer. The 

end-to-end backbone length of the β-hairpin is ~27 Å, comparable to the P-P distance of 31 Å for liquid-

crystalline DLPC bilayers. (b) Viewed from the top of the lipid bilayer. The C=O bond of residue 2 used for 

defining the ρ angle is highlighted. The β-sheet plane is relatively straight.  

 

 The possibility of overall fast libration of the peptide between the straight and the 

bent β-hairpin conformations can be reasonably ruled out, because the 15N chemical shift 

anisotropies of the peptide in DLPC bilayers are close to the rigid limit values, and because 

five out of seven 15N-labeled residues are located at the rigid β-turns of the peptide.  

 The solution structure that reproduced the experiment (Fig. 4.5) has strand (φ, ψ) 

angles that span a large range: the φ angles range from -155˚ to -67˚ and ψ angles from 59˚ to 

158˚.  The turn residues in this structure have torsion angles close to those of a type-II β-turn: 

(φ18 = -60˚, ψ18 = 94˚), (φ1 = 131˚, ψ1 = -25˚); and (φ9 = -67˚, ψ9 = 80˚), (φ10 = 128˚, ψ10 = -

18˚). To test if the peptide exists as a more ideal β-hairpin in the membrane, we simulated the 

2D spectra for a model β-hairpin structure (Fig. 4.7a) with uniform (φ, ψ) angles. The strand 
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torsion angles correspond to those of the classical antiparallel β-sheet. The turn residues’ 

torsion angles were modified from those of the RTD-1 structure so that the two strands are 

coplanar. As expected, the calculated spectra for this ideal hairpin show much less frequency 

dispersion than the spectra of the actual RTD-1 structure in Fig. 4.3, and the resonances fall 

on predictable elliptical patterns indicated as gray lines in Fig. 4.7 (4). The global best fit 

using this ideal β-hairpin, near (τ = 70˚, ρ = 220˚), disagrees noticeably with the 

experimental data (filled circles). The minimum RMSD is 0.43, again significantly higher 

than the experimental RMS noise. Thus, the 2D data rule out this ideal β-hairpin structure for 

the membrane-bound retrocyclin-2.  
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Figure 4.6. (a) RMSD between the experiment and simulations using a bent hairpin structure of RTD-1. The 

minimum RMSD of 0.47, which is significantly higher than the experimental RMS noise of 0.20, occurs at 

β = 88˚, α = 347˚ (star). (b) Best-fit simulation (open circles) superimposed with the experimental spectrum 

(filled circles). The two differ significantly. (c) RTD-1 structure 13 used for the simulations, showing 

significant curvature in the β-hairpin. The peptide is shown in its best-fit orientation, which happens to be 

transmembrane.  
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Figure 4.7. (a) Simulated 2D 15N-1H/15N correlation spectra of an ideal β-hairpin as a function of (τ, ρ) angles. 

Only the frequencies of the seven labeled residues are shown. Gray lines illustrate the orientation-dependent 

elliptical patterns on which the strand resonances fall. The best-fit spectrum, near (τ = 70˚, ρ = 220˚), does not 

fit the experimental spectrum well (filled circles). (b) The ideal hairpin conformation.  

 

 To investigate the orientation dependence of retrocyclin-2 on membrane thickness, 

we performed the 2D 15N-1H/15N correlation experiment on retrocyclin-2 oriented in POPC 

bilayers, which have a P-P distance of ~45 Å. The experimental spectrum (Fig. 4.8a) shows 

smaller 15N chemical shifts and lower spectral resolution than those of the DLPC/retrocyclin-

2 membrane, suggesting that the peptide has changed to a more in-plane orientation. Indeed, 

simulations yield best-fit angles of (τ = 65±15˚, ρ = 278±20˚) (Fig. 4.8b-c), which differ 

substantially from the peptide orientation in DLPC bilayers. Thus, the β-hairpin orientation 

becomes more parallel to the membrane plane in POPC bilayers (Fig. 4.8d) due to the 

increase of the membrane thickness.  
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Figure 4.8. (a) Experimental 2D 15N-1H/15N correlation spectrum of retrocyclin-2 in POPC bilayers (P:L=1:25). 

The peak shift to lower chemical shifts compared to the DLPC spectrum (Fig. 4.4a) and the strong overlap both 

indicate a more in-plane orientation of the peptide. (b) Best-fit spectrum with τ = 65˚ and ρ = 278˚. (c) RMSD 

between the experiment and simulations as a function of (τ, ρ). The minimum RMSD position is indicated by a 

star. (d) Orientation of retrocyclin-2 in POPC bilayers.  

 

 To investigate the selective disruption of microbial membranes by retrocyclin-2, we 

measured the 31P spectra of oriented membranes of different compositions in the presence of 

4% peptide. The zwitterionic POPC membrane retained good orientational order at this 

peptide concentration, while the mixed anionic membrane, POPC/POPG and POPE/POPG 

(3:1 molar ratio), showed significant powder intensities, indicating that retrocyclin-2 

preferentially destroys the orientational order of anionic membranes. This resembles the 

behavior of RTD-1 (26). Since bacterial membranes are rich in phosphatidylglycerol lipids 
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while eukaryotic membranes are not, this indicates that an important mechanism of 

retrocyclin action is electrostatic in origin.  

 

Discussion 

 The above data show that 15N 2D dipolar-shift correlation NMR is a sensitive 

technique for determining the orientation and restraining the secondary structure of β-sheet 

and β-hairpin peptides in lipid bilayers. Several aspects of this orientation determination 

differ from the case of α-helical peptides. First, because β-strands lack cylindrical symmetry 

around the main molecular axis, their 2D spectra depend characteristically on both the tilt 

angle of the strand axis and the rotation angle of the sheet plane. In contrast, the PISA wheel 

patterns of α-helical peptides are distinguished mostly by the tilt of the helical axis and not 

by the helix rotation angle (2). The unique dependence of the β-sheet spectra on both τ and ρ, 

or the lack of angular degeneracy, means that resonance assignment is not necessary for 

orientation determination, but can be obtained, if desired, from spectral fitting directly 

without additional singly labeled samples. The second aspect unique to β-hairpin peptides is 

the presence of outlier resonances of the turn residues because of their different N-H bond 

orientations from the strand residues. These peaks further enhance the spectral differences 

between different (τ, ρ) angles and facilitate orientation determination. Third, although both 

transmembrane and in-plane β-hairpin peptides have N-H bonds approximately 

perpendicular to the bilayer normal, in practice they give distinguishable spectra. This is a 

result of the inherent twist of the β-sheet, the non-ideality of the β-hairpin, and the unique 

orientations of the turn residues. For α-helical peptides, the situation is quite different: the 

transmembrane and in-plane orientations resonate at completely different frequencies, but 

both show much less spectral dispersion than β-hairpin peptides.  

 The 2D 15N-1H/15N correlation technique employed here can be conducted in a 

number of ways: for example, the 1H-15N polarization transfer can be achieved using the 

PISEMA sequence (27), and 1H homonuclear decoupling can be carried out using alternative 

sequences such as FSLG (28). These should improve the resolution in the dipolar dimension 

but do not change the orientation-dependent spectral patterns. The fact that both the DLPC 

and POPC-bound peptide spectra have a single global best fit (Figs. 4f, 8c) indicates the 
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uniqueness of the orientation determination due to the multiple frequency constraints brought 

about by the multiple 15N labels. Thus, the combination of extensive 15N labeling, uniaxial 

membrane alignment, and 2D SLF NMR, is a powerful approach for determining β-sheet 

peptide orientations with high precision.  

 The transmembrane orientation of retrocyclin-2 in DLPC bilayers determined from 

this study has several implications. First, how does the peptide satisfy hydrogen bonding to 

reduce the number of polar backbone groups exposed to the hydrophobic membrane? About 

half the residues in retrocyclin-2 form cross-strand intramolecular hydrogen bonds, leaving 

ten residues with remaining polar N-H and C=O groups exposed to the lipid bilayer. One 

possibility is that retrocyclin-2 may be oligomerized so that the number of polar groups per 

molecule is reduced. This could be tested by a recently developed spin diffusion experiment 

that determines the aggregation number of peptides in lipid membranes (29). Second, the 

transmembrane orientation of retrocyclin-2 in DLPC bilayers is stabilized by the 

hydrophobic matching between the peptide backbone length and the membrane thickness. 

The end-to-end length of the straight hairpin is ~27 Å, while the P-P distance of DLPC 

bilayers is 31 Å (30; 31). The similar hydrophobic length supports the transmembrane 

orientation. Moreover, the transmembrane orientation allows the three cationic Arg 

sidechains at the two β-turns (residues 9, 10, 18) to interact favorably with the anionic 

phosphate headgroups. These favorable hydrophobic and electrostatic interactions may help 

to overcome the energetic cost of inserting the remaining non-hydrogen-bonded polar groups 

into the membrane.  

 When the thicker POPC bilayer is used, retrocyclin-2 changes its tilt angle to ~65˚, 

much closer to the in-plane orientation. Similar dependences of peptide orientations on the 

membrane thickness have been reported in the literature (30; 32-34). For peptides much 

shorter than the membrane thickness, an in-plane orientation is expected. For example, the 

ten-residue cyclic β-hairpin peptide gramicidin S was found to be oriented parallel to the 

plane of DMPC bilayers (35). The change of retrocyclin-2 orientation from transmembrane 

in 12:0 DLPC bilayers to nearly surface-bound in 16:0-18:1 POPC bilayers indicates that 

retrocyclin-2 structure depends on the lipid environment. In principle, the headgroup 

structure and charge can also affect the peptide orientation. Since retrocyclin-2 disrupts the 
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orientational order of bacteria-mimicking anionic membranes (Fig. 4.9), it is difficult to 

determine its orientation in these lipid bilayers using the aligned-membrane approach. It is 

also possible that retrocyclin-2, like the lipids in these anionic membranes, may adopt a 

distribution of orientations in these environments.  
 

 
Figure 4.9. 31P spectra of retrocyclin-2 bound to various oriented lipid bilayers at a peptide concentration of 4%. 

(a) POPC. (b) POPC/POPG. (c) POPE/POPG.   
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Abstract  

Trehalose preserves lipid bilayers during dehydration and rehydration by replacing 

water to form hydrogen bonds between its own OH groups and lipid headgroups.  We 

compare the lipid conformation and dynamics between trehalose-protected lyophilized 

membranes and hydrated membranes, to assess the suitability of the trehalose-containing 

membrane as a matrix for membrane protein structure determination. 31P spectra indicate that 

the lipid headgroup of trehalose-protected dry POPC membrane (TRE-POPC) have an 

effective phase transition temperature that is ~50 K higher than that of the hydrated POPC 

membrane. In contrast, the acyl chains have similar transition temperatures in the two 

membranes. Intramolecular lipid 13C’-31P distances are the same in TRE-POPC and 

crystalline POPC, indicating that the lipid headgroup and glycerol backbone conformation is 

unaffected by trehalose incorporation. Intermolecular 13C-31P distances between a membrane 

peptide and the lipid headgroups are 10% longer in the hydrated membrane at 226 K than in 

the trehalose-protected dry membrane at 253 K. This is attributed to residual motions in the 

hydrated membrane, manifested by the reduced 31P chemical shift anisotropy, even at the low 

temperature of 226 K. Thus, trehalose lyoprotection facilitates the study of membrane protein 
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structure by allowing experiments to be conducted at higher temperatures than possible with 

the hydrated membranes.  

 

Keywords: trehalose, lipid bilayers, 13C-31P distances, membrane peptide structure, solid-

state NMR 

 

1. Introduction 

 Trehalose (TRE), a non-reducing disaccharide of glucose, is known to stabilize lipid 

bilayers and proteins during dehydration and rehydration. It is found at concentrations as 

much as 20 wt% of the dry weight of anhydrobiotic organisms [1]. Generally, the protection 

efficiency is proportional to the concentration of trehalose, but the full protection can be 

achieved when the concentration of trehalose reaches a threshold, which is ~100 mM in the 

preservation of proteins and 0.3 g/g of lipid in the preservation of phospholipid bilayers 

during drying [2, 3]. The mechanism of trehalose stabilization of cell membranes is proposed 

to be a depression of the gel to liquid-crystalline (LC) phase transition temperature (Tm) of 

the dry membrane, so that membrane disruption, which normally occurs during phase 

transition, is prevented during rehydration [4]. On a molecular level, trehalose is believed to 

replace the hydrogen bonds between water and the lipid phosphate group with hydrogen 

bonds between its own OH groups and the phosphate, thus maintaining membrane integrity 

in the absence of water. This “lyoprotecting” property of trehalose can be, and indeed has 

been [5], exploited in solid-state NMR studies of the depth of insertion of membrane proteins. 

The depth information can be obtained from distance measurements between 13C labels in the 

protein and the 31P spin of the lipid headgroup. This requires the motions that are abundant in 

hydrated lipid bilayers to be frozen to yield rigid-limit distance-dependent dipolar couplings. 

Freezing lipid motions requires temperatures of at least 40 K below Tm, often over an 

extended period of time to allow signal averaging of the lipid-diluted peptides. These are 

challenging conditions for NMR experiments. We show here that trehalose-containing dry 

lipid membranes preserve the lipid bilayer structure while removing the headgroup and 

glycerol backbone motions at higher temperatures than the hydrated membranes, thus 

facilitating the measurement of protein-lipid distances. While the phase properties of 
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trehalose-DPPC mixtures had been investigated by NMR before [6, 7], a comparison of the 

conformation of the hydrated and trehalose-containing membranes for protein structure 

determination has not been reported.  

 

2. Results and discussion 

We first characterize the dynamic structure of trehalose-containing lipid membranes 

by static 31P and 2H NMR. POPC is chosen as a model system because its chain lengths (16 

and 18 carbons) are dominant in biological membranes and the choline headgroup is 

common in eukaryotic cell membranes. Hydrated POPC bilayers have a relatively low Tm of 

271 K, thus necessitating low temperatures of ~220 K or below to freeze the lipid motion. 

We compared the mobility of the lipid headgroup and the acyl chain between the hydrated 

POPC and trehalose-protected lyophilized POPC membrane (TRE-POPC) at various 

temperatures. Fig. 5.1 shows the 31P spectra of hydrated POPC bilayers with 35 wt% water (a) 

and lyophilized POPC membrane containing 20 wt% trehalose (b). The transition 

temperature for the headgroup region of the TRE-POPC membrane is ~323 K, which is ~50 

K higher than that of the hydrated POPC membrane. At 273 K, the 31P spectrum of hydrated 

POPC (a) shows a small chemical shift anisotropy (CSA), δ = δZZ-δiso, of 30 ppm and an 

asymmetry parameter η of 0, characteristic of uniaxially mobile lipids in Lα-phase membrane. 

In contrast, TRE-POPC reaches a similarly narrow CSA and uniaxial lineshape only at ~323 

K. To obtain the rigid-limit 31P CSA of ~110 ppm [8], a low temperature of 233 K is required 

for hydrated POPC while T = 263 K is sufficient for TRE-POPC. Fig. 5.1(c, d) plots 31P CSA 

δ and η as a function of temperature for the two samples. Compared to the hydrated POPC 

membrane, trehalose increases the lipid-headgroup phase transition temperature by ~50 K. 

This does not contradict the fact that trehalose suppresses the Tm of dry POPC, which is 

~340 K [9]. Based on the observed temperature at which 31P CSA is motionally narrowed 

(323 K), the addition of 20% trehalose decreased the Tm of dry POPC by ~15 K.  

In comparison, the acyl chain region exhibits a much smaller difference between the 

transition temperatures of the hydrated POPC membrane and TRE-POPC membrane. The 2H 

quadrupolar couplings of d31-POPC (Fig. 5.2) indicate that at the highest temperature at 

which the lipid headgroups are rigid, the chains in the hydrated membrane are frozen (233 K) 
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while the chains in the TRE-POPC membrane remain partly mobile (263 K). The deferred 

freezing of the acyl chains compared to the headgroup was also observed in TRE-DPPC 

membrane [6]. At the same temperature, the lipid chain dynamics is similar between the 

hydrated and the trehalose-protected POPC membranes, as seen, for example, in the 2H 

spectra at 263 K (Fig. 5.2).  Thus, trehalose specifically restricts the motion of the lipid 

headgroups while largely preserving the acyl chain mobility. For the peptide-lipid headgroup 

distance measurement, it is sufficient that the headgroup is rigid.  

 

 
Fig. 5.1. Static 31P spectra of (a) hydrated POPC and (b) lyophilized POPC with 20% trehalose. (c) Temperature 

dependence of the 31P chemical shift anisotropy parameter δ for hydrated POPC (open squares) and TRE-POPC 

(filled squares). (d) Temperature dependence of the 31P chemical shift asymmetry parameter η for hydrated 

POPC (open circles) and TRE-POPC (filled circles). 
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Fig. 5.2. Static 31P (a, c) and 2H (b, d) spectra of d31-POPC in the hydrated membrane (a, b) and in the 

lyophilized membrane with 20% trehalose (c, d). The lipid headgroup transition temperature is ~273 K for the 

hydrated POPC but ~323 K for TRE-POPC. However, the acyl chain mobilities are similar between the two 

membranes.  

 

To assess if the addition of trehalose affects the headgroup and glycerol backbone 

conformation of the lipid, we measured the intramolecular distances between the two 

carboxyl (C’) carbons and 31P in the 13C’-labeled crystalline POPC and TRE-POPC. The 

rotational-echo double resonance (REDOR) experiment [10] was used to measure the 

heteronuclear distance. Crystalline POPC was used to represent the structure of frozen 

hydrated POPC, since crystal structures of other phosphocholine lipids show well-defined 

lamellar structures in which the headgroup and backbone conformation of the molecules is 

believed to represent the main conformation of the hydrated lipid [11]. Fig. 5.3a shows 13C’-
31P REDOR S/S0 values of 13C’-labeled crystalline POPC obtained at room temperature. Four 
13C’ peaks are resolved, indicating the high degree of order of the sample. These are assigned 

to two unique molecules in the unit cell, each with two distinct 13C’ sites, sn-1 and sn-2 C’. 

The presence of two inequivalent molecules in the unit cell is inferred from the crystal 

structure of the analogous DMPC lipid [11], since the POPC crystal structure is not known. 
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The two downfield 13C’ peaks exhibit faster REDOR decays indicative of a distance of 5.3 Å, 

while the two upfield peaks give longer distances of 6.2 Å and 6.7 Å (Fig. 5.3a). The crystal 

structure of DMPC [11] shows that the sn-2 13C’-31P distances are shorter than the sn-1 13C’-
31P distances by 1.4 Å and 2.4 Å (Table 5.1). Thus, we assigned the downfield peaks to sn-2 
13C’. Fig. 5.3b shows the REDOR data of TRE-POPC acquired at 263 K. While the 

resolution is reduced compared to the crystalline sample, the differential dephasing remains 

clear (inset). TRE-POPC also exhibits a short distance, 5.3 ± 0.6 Å, for the downfield signal 

and longer distances, 5.8 ± 1.0 Å and 6.8 ± 1.2 Å, for the two upfield peaks. The distances 

have significant distributions, reflected by the need for a Gaussian distribution function to 

simulate the REDOR curves, with the half-width-at-half-maximum of the Gaussian reported 

as the uncertainty. This distance distribution is consistent with the observed peak broadening, 

indicating increased conformational heterogeneity of the lyophilized TRE-POPC membrane 

compared to the crystalline POPC lipid. Despite this heterogeneity, the average distances are 

similar between the crystalline POPC and TRE-POPC, indicating that trehalose preserves the 

lipid headgroup and glycerol backbone conformation. To emphasize the innate disorder and 

distance distribution in lipid bilayers, we also show the 13C’-31P distances from MD 

simulations of hydrated POPC bilayers (Fig. 5.3c-d). The average distances and their 

standard deviations are 5.5 ± 0.5 Å (sn-2) and 6.2 ± 0.5 Å (sn-1) for the Lα phase 

(http://persweb.wabash.edu/facstaff/fellers/), and 4.7 ± 0.6 Å (sn-2) and 6.7 ± 0.6 Å (sn-1) 

for the gel phase [12]. The measured REDOR distances agree well with these values within 

experimental uncertainty, except for the 5.8 Å distance in the TRE-POPC sample.  
Table 5.1. Comparison of intramolecular 13C’-31P distances in crystalline and trehalose-protected POPC lipids 

from REDOR, MD simulations and X-ray crystallography.  
13C’-31P distances (Å) 

MD 
 

 

Sites 

 

Chemical shift 

(ppm) 

Crystalline 

POPC 
TRE-POPC 

Lα phase a Gel phase b 

DMPC crystal 

structure 

172.0 6.2 6.8 ± 1.2 6.8 
sn-1 

173.5 6.7 5.8 ± 1.0 

6.2 ± 0.5 

 

6.7 ± 0.6 

 7.0 

174.6 5.3 5.3 ± 0.6 5.4 
sn-2 

175.5 5.3 5.3 ± 0.6 

5.5 ± 0.5 

 

4.7 ± 0.6 

 4.6 
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a Obtained from: http://persweb.wabash.edu/facstaff/fellers/coordinates/popc.pdb.  
b Obtained from http://www.lrz-muenchen.de/~heller/membrane/gel.pdb [12].  

 

 
Fig. 5.3. 13C’{31P} REDOR data of (a) crystalline POPC at 293 K and (b) TRE-POPC at 263 K. The chemical 

structure of POPC is shown at the top, with the dashed lines indicating the distances measured here. (a) Best-fit 

distances for crystalline POPC, whose 13C’ spectrum is shown in the inset, are 5.3 Å (dashed line) for the two 

downfield peaks, and 6.2 Å and 6.7 Å (solid lines) for the two upfield peaks. (b) Inset is the S0 (solid line) and S 

(dashed line) spectra of TRE-POPC at tm = 12.8 ms. Best-fit distances are 5.3 ± 0.6 Å for the downfield peaks 

http://persweb.wabash.edu/facstaff/fellers/coordinates/popc.pdb
http://www.lrz-muenchen.de/~heller/membrane/gel.pdb
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and 5.8 ± 1.0 Å and 6.8 ± 1.2 Å for the upfield peaks. Simulations in (a, b) used an intensity scaling factor of 

90% to account for the effects of pulse imperfection [15]. (c) 13C’-31P distance distribution in liquid-crystalline 

POPC bilayers from MD simulations. The average sn-1 13C’ - 31P distance (blue) is 6.2 Å with a standard 

deviation of 0.5 Å. The average sn-2 13C’-31P distance (red) is 5.5 ± 0.5 Å. Black arrows: REDOR-extracted 
13C’-31P distances in crystalline POPC. Green arrows: 13C’-31P distances in the DMPC crystal structure [11]. (d) 
13C’-31P distance distribution in gel-phase POPC bilayers from MD simulations [12]. The average sn-1 13C’-31P 

distance (blue) is 6.7 ± 0.6 Å. The average sn-2 13C’-31P distance (red bars) is 4.7 ± 0.6 Å. Black arrows: 

measured 13C’-31P distances in the TRE-POPC membrane.  

 

We show an example of trehalose lyoprotection for facilitating structural 

investigation of membrane proteins using protegrin-1 (PG-1). PG-1 is a disulfide-stabilized 

18-residue β-hairpin antimicrobial peptide that kills microbial cells by disrupting their cell 

membranes [13]. To determine the depth of insertion of PG-1 in the lipid bilayer, we 

measured the distance between 13C’-labeled Val16 of PG-1 and the lipid 31P. Fig. 5.4a shows 
13C{31P} REDOR decays of Val16 13C’ in the dry TRE-POPE/POPG membrane (filled 

squares), acquired at 253 K, and in the hydrated POPE/POPG membrane (open circles), 

acquired at 226 K. The former gave a distance of 6.5 Å while the latter gave a longer distance 

of 7.2 Å. Although we cannot rule out the possibility of subtle differences in the PG-1 depth 

of insertion between the two membranes, the 13CO linewidth (3.5 ppm) and chemical shift 

(172 ppm) of Val16 are the same between the frozen hydrated membrane and the trehalose-

protected membrane, indicating that the peptide conformation, and by inference its binding, 

is unchanged. At the same time, 31P NMR spectra show that there is residual motion in the 

hydrated membrane even at the low temperature of 226 K. The 31P CSA principle values are 

(82.9 ppm, 21.4 ppm, -110.0 ppm) for the TRE-POPE/POPG membrane (black) at 253 K 

(Fig. 5.4b), giving δ = 108.1 ppm, while the hydrated POPE/POPG membrane (red) has a 

smaller CSA of δ = 104.7 ppm (80.1 ppm, 21.1 ppm, -106.4 ppm). Thus, the hydrated lipid 

bilayer exhibits small-amplitude motion of the headgroups even at 226 K [8]. This motion is 

faster than the 31P CSA interaction of ~18 kHz. Since the measured 13C-31P dipolar coupling 

is about 35 Hz, there are likely additional slower headgroup motions on the 10-5 – 10-2 s 

timescale that further average the peptide-lipid dipolar coupling. Thus, we attribute the 
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observed 0.7 Å longer distance or a dipolar order parameter of 0.74 ( S = ωd ωd ) to this 

residual motion.  

The above REDOR distances were extracted using two-spin simulations (one 13C and 

one 31P). Geometric constraints indicate that at most two 31P spins can be simultaneously 

close to any carbon in the middle of the peptide chains. Using 3-spin simulations changes the 

individual distances by up to 20% for short distances of < 4.5 Å and up to 10% for distances 

longer than 6.5 Å, and thus does not affect the structural conclusion significantly. A full 

report of the PG-1 peptide-lipid distance study will be given elsewhere.  
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Fig. 5.4. (a) REDOR curves of PG-1 Val16 13CO after natural abundance correction in the TRE-POPE/POPG 

membrane (filled squares) and in hydrated POPE/POPG membrane (open circles). The experiments were 

conducted at 253 K for the lyophilized sample and 226 K for the hydrated sample. Best-fit distances are 6.5 Å 

for the former and 7.2 Å for the latter. (b) 31P static spectra of the TRE-POPE/POPG membrane (black) at 253 

K and the hydrated POPE/POPG membrane (red) at 226 K. Both contain PG-1 at P/L (mole) = 1:12.5.  

 

3. Conclusion 

In conclusion, we find that trehalose-protected dry lipid membrane gives rise to a 

more immobilized matrix in the headgroup and glycerol backbone region, while not 

significantly affecting the lipid chain mobility compared to the hydrated membrane. 

Importantly, the membrane interface immobilization by trehalose occurs without changing 
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the lipid headgroup and backbone conformation, as shown by intramolecular 13C’-31P 

distances. This suggests that the rigid-limit membrane-bound structure of proteins should be 

very similar between hydrated and trehalose-protected dry membranes. A peptide-lipid 13C-
31P distance measurement shows that the hydrated membrane sample gives a motionally 

averaged coupling even at 226 K while the trehalose-protected dry sample gives rigid-limit 

dipolar coupling already at 253 K. Thus, trehalose lyoprotection should facilitate the 

determination of membrane protein distances to lipid headgroups as well as membrane 

protein conformation itself by enabling these experiments at conveniently accessible mild 

low temperatures.  

 

4. Materials and methods 

Unlabeled and 13C’ labeled 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine 

(POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), and 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) were purchased from Avanti 

Polar Lipids (Alabaster, AL). PG-1 (NH2-RGGRLCYCRRRFCVCVGR-CONH2) was 

synthesized using Fmoc solid-phase protocols as previously described [14].  

 

Membrane sample preparation  

 Six different membrane samples were prepared. Hydrated POPC and trehalose-

protected dry POPC were used to measure the 31P chemical shift anisotropy and 2H 

quadrupolar couplings of the perdeuterated palmitoyl chains. 13C’-labeled POPC in the 

crystalline form and the trehalose-mixed form was used to measure intramolecular 13C’-31P 

distances. Two PG-1 containing membrane samples were compared with respect to their 

intermolecular 13C-31P distances: a trehalose-containing dry POPE/POPG membrane, and a 

hydrated POPE/POPG membrane.  

Crystalline 13C’-labeled POPC was taken directly from the Avanti bottle. The high 

degree of structural order is evident from the fact that the 31P spectrum gives the rigid-limit 

CSA at ambient temperatures (not shown), and that four 13CO peaks are well resolved in a 4 

ppm range, with linewidths (FWHM) of 0.4-0.6 ppm.  
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Hydrated POPC membrane was prepared by adding 35 wt% water directly to the dry 

lipid powder. The trehalose-containing dry POPC membrane was prepared by mixing 

trehalose (20% of dry lipid mass) and POPC in water, freeze-thawing the suspension three 

times, then lyophilizing the mixture. The dried mixture was packed into a 4 mm MAS rotor, 

then further lyophilized in the rotor to remove the moisture from packing.  

To prepare the PG-1-containing membrane sample, POPE and POPG (3:1 molar ratio) 

were mixed in chloroform and blown dry, then redissolved in cyclohexane and lyophilized. 

The lipids were redissolved in water and subjected to five cycles of freeze-thawing to form 

homogeneous vesicles. The peptide and lipid solutions were mixed, incubated at 303 K for 

12 hours, then ultracentrifuged at 55,000 rpm for 2 hours. For the hydrated POPE/POPG 

membrane sample, the pellet was directly packed into a 4 mm MAS rotor. For the trehalose-

protected dry membrane sample, the pellet was resuspended in water, and an amount of 

trehalose equivalent to 20% of the dry weight of the lipids and peptide was added. The 

suspension was subjected to three more cycles of freeze-thawing, lyophilized, packed into a 4 

mm MAS rotor, then lyophilized again to remove residual moisture from packing.  

 

Solid-state NMR experiments 

NMR experiments were carried out on a Bruker DSX-400 spectrometer operating at a 

resonance frequency of 400.49 MHz for 1H, 162.12 MHz for 31P, 61.48 MHz for 2H and 

100.70 MHz for 13C. A double-resonance static probe equipped with a 5-mm diameter 

solenoid coil was used for static 2H and 31P experiments. A triple-resonance MAS probe with 

a 4 mm spinning module was used for the 13C{31P} REDOR experiments. Low temperatures 

were achieved using a Kinetics Thermal Systems XR air-jet sample cooler (Stone Ridge, 

NY). The temperature was maintained within ±1 K of the reported value, and the spinning 

speed was regulated to within ±3 Hz. Typical 90° pulse lengths were 4 - 5 μs for all  nuclei. 
1H decoupling field strengths of 50-80 kHz were used. 1H-13C cross-polarization (CP) contact 

times were 0.5 ms. 13C chemical shifts were referenced externally to the α-Gly 13C’ signal at 

176.49 ppm on the TMS scale. The 31P chemical shift was referenced externally to 85% 

phosphoric acid at 0 ppm.  
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 A modified REDOR pulse sequence containing composite 31P π pulses, 90°180°90°, 

and exorcycled 13C π pulse was used [15]. This composite-pulse sequence reduces the effect 

of the pulse flip angle errors, thus improving the distance accuracy. Two experiments were 

conducted for each tm, a control experiment (S0) where all the 31P pulses are turned off, and a 

dephasing experiment (S) where the 31P pulses are on. The normalized dephasing, S/S0, as a 

function of tm gives the dipolar coupling without the T2 relaxation effect of the 13C spin. 

Typical 180˚ pulse lengths were 10 μs for 13C and 8-10 μs for 31P.  The spinning speed was 5 

kHz for the pure lipid samples and 4.5 kHz for the peptide-containing membrane samples. 

REDOR data were simulated using an in-house Fortran program.  
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Abstract 

The insertion of charged amino acid residues into the hydrophobic part of lipid 

bilayers is energetically unfavorable yet found in many cationic membrane peptides and 

protein domains. To understand the mechanism of this translocation, we measured the 13C-
31P distances for an Arg-rich β-hairpin antimicrobial peptide, PG-1, in the lipid membrane 

using solid-state NMR. Four residues, including two Arg’s, scattered through the peptide 

were chosen for the distance measurements. Surprisingly, all residues show short distances to 

the lipid 31P: 4.0 – 6.5 Å in anionic POPE/POPG membranes and 6.5 – 8.0 Å in zwitterionic 

POPC membranes. The shortest distance of 4.0 Å, found for a guanidinium Cζ at the β-turn, 

suggests   N − H"O − P  hydrogen bond formation. Torsion angle measurements of the two 

Arg’s quantitatively confirm that the peptide adopts a β-hairpin conformation in the lipid 
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bilayer, and gel-phase 1H spin diffusion from water to the peptide indicates that PG-1 

remains transmembrane in the gel phase of the membrane. For this transmembrane β-hairpin 

peptide to have short 13C-31P distances for multiple residues in the molecule, some phosphate 

groups must be embedded in the hydrophobic part of the membrane, with the local 31P plane 

parallel to the β-strand. This provides direct evidence for toroidal pores, where some lipid 

molecules change their orientation to merge the two monolayers. We propose that the driving 

force for this toroidal pore formation is guanidinium-phosphate complexation, where the 

cationic Arg residues drag the anionic phosphate groups along as they insert into the 

hydrophobic part of the membrane. This phosphate-mediated translocation of guanidinium 

ions may underlie the activity of other Arg-rich antimicrobial peptides and may be common 

among cationic membrane proteins.  

 

Introduction 

 Charged and polar residues are surprisingly common in a diverse range of membrane 

proteins. For instance, cationic antimicrobial peptides (AMPs) such as protegrin-1 (PG-1: 

RGGRLCYCRRRFCVCVGR) permeabilize the lipid membranes of microbes to cause cell 

death 1,2. Cell-penetrating peptides such as the HIV TAT peptide (48-60: 

GRKKRRQRRRPPQ) are rich in Arg and Lys and yet translocate across cell membranes 

with ease 3,4. Voltage-gated potassium channels contain voltage-sensing domains (e.g. KvAP 

S4 helix: LGLFRLVRLLRFLRILLII) rich in Arg 5. Polar residues such as Asn and Glu play 

important functional and stabilizing roles in the folding of membrane proteins by forming 

interhelical hydrogen bonds 6-8. Generally, the insertion of the charged and polar residues 

into the hydrophobic part of the bilayer is energetically unfavorable. This has been studied in 

detail by measuring, for example, the free energies of transferring peptides from water to 

octanol 9. However, this view is recently modified by the finding that hydrophobic residues 

compensate for the energy cost of incorporating charged and polar residues into the lipid 

bilayer and that the free energy of insertion also depends sensitively on the position of the 

polar residues in the membrane 10. Using an in vitro endoplasmic reticulum translocon 

system, von Heijne, White, and coworkers measured the equilibrium constant of membrane 

insertion of designed polypeptides containing the amino acid of interest at various positions 
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10. The resulting biological hydrophobicity scale for the twenty amino acids was found to be 

position-dependent as well as charge- and polarity- dependent. It was found that the S4 helix 

of the voltage-gated potassium channel KvAP inserts into the membrane despite the presence 

of four Arg’s 11, and the fraction of insertion increases when two Arg residues moved one 

step closer to the C-terminus. Molecular dynamics simulations showed that the effective lipid 

bilayer thickness was reduced to an astonishingly small ~10 Å near the inserted S4 helix so 

that water and phosphate groups stabilize the Arg residues in the middle of the helix through 

hydrogen bonding 12. However, such a dramatic accommodation of the Arg residues by the 

lipid bilayer has not been directly observed experimentally.  

 PG-1 is a broad-spectrum AMP found in porcine leukocytes 1,13. It is a β-hairpin 

molecule stabilized by two disulfide bonds and contains six Arg residues (Figure 6.1a). Its 

Arg-rich sequence and β-sheet conformation 14 are characteristic of many AMPs such as 

human defensins and tachyplesin 15,16. PG-1 carries out its antimicrobial function by forming 

pores in the microbial cell membrane, thus disrupting the membrane’s barrier function. These 

pores were observed from lipid vesicle leakage assays 17,18 and neutron diffraction 19. 

Recently, 1H and 19F spin diffusion NMR data showed that PG-1 self-assembles into a 

transmembrane oligomeric β-barrel in bacteria-mimetic POPE/POPG membranes 20, 

providing the first high-resolution structure of PG-1 at the pores. However, the depths of 

insertion of the Arg residues in these β-barrels relative to the lipid bilayer remain elusive. 

According to the hydrophobicity scale of White and Von Heijne, the insertion of a single Arg 

into the center of the bilayer costs a free energy of 2.58 kcal/mol 10, one of the highest ΔG 

values among the twenty amino acids. Yet PG-1, with six Arg residues distributed both in the 

middle of the β-strand and at the two ends of the β-hairpin, has been shown to insert well 

into the hydrophobic part of most lipid membranes except for cholesterol-containing POPC 

bilayers at high peptide concentrations 20-23. To solve this puzzle, we have now measured the 

distances between Arg residues in PG-1 and 31P of the lipid headgroups using rotational-echo 

double resonance (REDOR) experiments. Surprisingly, we found that both Arg’s at the β-

turn and in the middle of the β-strand have short distances of less than 6.5 Å to 31P. This is 

true for both the backbone and the sidechain of the Arg residues, thus sidechain snorkeling to 

the membrane surface 24 cannot account for the observation. Instead, the data indicate that 
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PG-1 causes some of the phosphate groups to insert into the hydrophobic part of the 

membrane so that the local 31P plane is parallel to the β-strands. Thus, some lipid molecules 

must change their orientations and merge the two monolayers, as proposed in the toroidal 

pore model. These results, which represent the first high-resolution distance constraints of 

Arg residues in proteins with respect to lipid membranes, suggest that the molecular 

mechanism for toroidal pore formation is guanidinium-phosphate complexation, which 

neutralizes the guanidinium ions before they insert into the membrane.  

 

Materials and Methods 

All lipids were purchased from Avanti Polar Lipids (Alabaster, AL). PG-1 was 

synthesized using Fmoc chemistry as previously described 25. Four PG-1 samples were 

synthesized, containing U-13C, 15N-Arg4 and 15N-Leu5, U-13C, 15N-Arg11 and 15N-Phe12, 
13Cα-Leu5, and 13CO-Val16. U-13C, 15N-labeled Arg was obtained from Spectra Stable 

Isotopes (Columbia, MD) as Fmoc-Arg(MTR)-OH.  

POPE and POPG lipids were mixed in chloroform at a 3:1 molar ratio and blown dry 

under N2 gas. The mixture was then redissolved in cyclohexane and lyophilized. The dry 

lipid powder was dissolved in water and subjected to five cycles of freeze-thawing to form 

uniform vesicles. An appropriate amount of PG-1 to reach a peptide-lipid molar ratio of 

1 : 12.5 was dissolved in water and mixed with the lipid vesicle solution, incubated at 303 K 

overnight, then centrifuged at 55,000 rpm for 2.5 hours. The pellet was packed into a MAS 

rotor, giving a hydrated membrane sample. For the trehalose-protected membrane samples, 

the pellet was resuspended in water, and an amount of trehalose equivalent to 20% of the dry 

mass of the lipid and peptide was added 26. The suspension was subject to three freeze-

thawing cycles, then lyophilized and packed into a rotor. A further lyophilization step was 

applied to the sample in the rotor to remove moisture gained during packing. The POPC 

samples were prepared similarly. The sugar-protected dry membranes have the same lamellar 

structure as hydrated membranes, but have reduced lipid headgroup motion, thus enabling 

distance experiments to be conducted at mild temperatures 27.  

NMR experiments were carried out on a Bruker DSX-400 (9.4 Tesla) spectrometer 

(Karlsruhe, Germany) and an AVANCE II 600 MHz (14.1 Tesla) spectrometer. Triple-
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resonance magic-angle spinning (MAS) probes with a 4 mm spinning module was used. Low 

temperatures were reached using a Kinetics Thermal Systems XR air-jet sample cooler 

(Stone Ridge, NY) on the 400 MHz system and a Bruker BCU-Xtreme unit on the 600 MHz 

spectrometer. Typical 90° pulse lengths were 4 – 5 μs for 13C and 31P, and 1H decoupling 

fields of 50-80 kHz were used. 13C chemical shifts were referenced externally to the α-Gly 
13C’ signal at 176.49 ppm on the TMS scale.  

 13C-31P distances were measured using a selective REDOR experiment 28 for the 

uniformly 13C, 15N-labeled Arg residues and non-selective REDOR 29 for the site-specifically 

labeled Leu5 13Cα and Val16 13CO samples. Composite 90°180°90° pulses were applied on 

the 31P channel to reduce the effect of flip angle errors and enhance the distance accuracy 30. 

For the selective REDOR experiment, the central 13C π pulse is a rotor-synchronized 

Gaussian pulse of 444 or 888 μs centered at the 13C frequency of interest. This soft pulse 

recouples the desired 13C-31P dipolar coupling, but removes the 13C-13C J-coupling between 

the 13C on resonance and its directly bonded 13C. For the specifically labeled samples, a hard 
13C π pulse was used. At each REDOR mixing time (tm), a control experiment (S0) with the 
31P pulses off and a dephasing experiment (S) with the 31P pulses on were carried out. The 

normalized dephasing, S/S0, as a function of tm gives the 13C-31P dipolar coupling. The CO 

data were corrected for the lipid natural-abundance CO signal. The experiments were 

conducted under 4.5 kHz MAS at 253 K for the TRE-POPE/POPG membranes, and under 5 

kHz MAS and 263 K for the TRE-POPC membranes. 31P 180˚ pulse lengths of 8-9 μs were 

used to achieve complete inversion of the broad 31P resonance.  

The ψ angles of Arg4 and Arg11 were measured using the NCCN technique, which 

correlates the 15Ni-13Cαi and 13COi- 15Ni+1 dipolar couplings to obtain the relative orientation 

of the two bonds 31,32. 13Cα-13CO double quantum coherence was excited using the SPC-5 

sequence 33, and evolves under the REDOR-recoupled 13C-15N dipolar interaction 29. A pair 

of 13C spectra were collected at each C-N mixing time, and the S/S0 values of the CO and Cα 

signals were averaged and plotted as a function of mixing time to yield the ψ-angle 

dependent curve. The φ angles were measured using the HNCH technique, which correlates 

the 1HN-15N and 13Cα-1Hα dipolar couplings 34. The experiment yields HN-N-Cα-Hα angle 
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(φH), which is related to the φ-angle according to φ = φH + 60°. The NCCN and HNCH 

experiments were conducted at 253 K on the trehalose-protected membrane samples under 

5.5 kHz and 4.44 kHz MAS, respectively.   

 The 2D 31P-1H correlation experiment with 1H spin diffusion 35 was conducted on 

hydrated POPE/POPG membranes with and without PG-1 at 303 K under 5 kHz MAS. The 
1H spin diffusion mixing time was 64 ms, and a pre-evolution 1H T2 filter of 800 μs was used 

to select the mobile component. The 1H-31P CP contact time was 4 ms. The 1H chemical 

shifts of the POPE/POPG membrane were assigned via the well-known 13C chemical shifts 

by a 13C-1H 2D correlation experiment.  

 The gel-phase 1H spin diffusion experiment 36 from water to peptide was carried out 

on DLPC-bound PG-1 samples, which were used previously to measure the depths of PG-1 

residues in the liquid-crystalline (LC) phase by Mn2+ paramagnetic relaxation enhancement 
22. The experiments were performed between 230 K and 243 K, such that the water 1H 

linewidth after a 200 μs T2 filter is 330 Hz 37. After the T2 filter, only the water 1H 

magnetization and a small amount of headgroup γ proton signal remains, so that without spin 

diffusion, the 13C spectrum suppresses all peptide and lipid signals except for the lipid Cγ 

signal. 1H mixing times of 0.25 – 49 ms were then used to detect peptide signals that result 

from spin diffusion from the membrane surface water.  

 

Results 
13C-31P distances between PG-1 and lipid headgroups 

 We measured the distances from two Arg residues, Arg4 and Arg11, and two 

hydrophobic residues, Leu5 and Val16, to the lipid phosphate groups. Arg11 represents the β-

turn, which contains three consecutive Arg’s, whereas Arg4 lies in the middle of the N-

terminal β-strand (Figure 6.1a). Two types of lipid membranes were used to bind the peptide: 

the anionic POPE/POPG mixture mimics the bacterial membrane, whereas the zwitterionic 

POPC bilayer allows the electrostatic effect on distances to be examined. Figure 6.1(b) 

shows a representative 13C spectrum of Arg4 in trehalose-protected POPE/POPG (TRE-

POPE/POPG) membrane. Both Arg4 and Arg11 exhibit β-sheet secondary shifts for Cα and 

CO (Table 6.1), but the Arg4 Cα chemical shift is smaller than Arg11 Cα, indicating a more 
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ideal β-sheet conformation. The Arg Cβ peak overlaps with Cγ (Figure S6.1) and thus cannot 

be used for secondary structure analysis. Arg11 Cα shows two peaks that are 1.0 ppm apart, 

which we attribute to small conformational differences due to binding to two different lipid 

headgroups. Overall, the Arg chemical shifts are similar between the POPE/POPG membrane 

and the POPC membrane, indicating that the conformation is unchanged by the membrane 

composition.  

 
Figure 6.1. 13C-31P REDOR data of Arg4 (red squares), Arg11 (black circles), Leu5 and Val16 (open diamonds) 

of PG-1 in POPE/POPG membranes. (a) Amino acid sequence of PG-1. The labeled Arg4 and Arg11 are shaded. 

(b) 13C spectrum of Arg4 in the TRE-POPE/POPG membrane. The assigned Arg peaks are resolved from the 

lipid 13C signals. (c) 13Cζ-31P distances of Arg4 and Arg11. Best-fit distances are 5.7 ± 1.5 Å for Arg4 and 4.0 Å 

and 5.1 Å (1 : 1) for Arg11. The single-distance best-fit curves of 5.3 Å and 4.5 Å (dashed lines) disagree with 

the experiment, indicating a distance distribution for Arg11. A pair of REDOR spectra of Arg11 Cζ is shown in 

the inset. (d) 13CO-31P distances. Best-fit distances are 6.2 Å for Arg4 and Val16 and 5.6 ± 0.9 Å for Arg11. The 

single-distance curve of 5.3 Å (dashed line) does not fit the Arg11 data. A pair of Arg11 REDOR spectra is 

shown in the inset. (e) 13Cα-31P distances. Best-fit distances are 6.3 Å for Arg4 and Leu5 and 5.5 Å for Arg11. (f) 

Model of the guanidinium-phosphate complex for Arg11 with the measured 13C-31P distances. A putative 

hydrogen bond between the guanidinium and phosphate groups is indicated as red dotted line.  

 

Figure 6.1(c-e) shows the 13C{31P} REDOR data of various 13C sites in the 

POPE/POPG membrane. At 253 K, the trehalose-protected membrane 27 has fully 

immobilized lipid headgroups, as manifested by the rigid-limit 31P chemical shift span (193 

ppm). A selective 13C π pulse was used during the REDOR period for the Arg-labeled 

samples to remove the 13C-13C J-couplings 28. Intriguingly, all backbone sites of the four 
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residues as well as the sidechain of both Arg residues gave short distances of 4.0 – 6.5 Å, 

with Arg11 Cζ exhibiting the shortest distances of 4.0 Å and 5.1 Å at a 1:1 ratio (Figure 6.1c). 

The backbone of the two hydrophobic residues has distances of 6.2 Å and 6.5 Å. These 

distances have estimated uncertainties of ±0.2 Å. In addition to the short distances, all 

REDOR curves show nearly quantitative (90%) decay, with the remaining 10% due to pulse 

imperfections 30. This means that all peptides, rather than just a fraction, lie close to the lipid 

headgroups. To verify that the experiment can detect longer 13C-31P distances, we measured 

the intramolecular 13C-31P distances of POPE bilayers at 226 K. Indeed long distances of 8 Å 

and greater than 12 Å, which gave no detectable dephasing within a mixing time of 20 ms, 

were found for the lipid chain carbons far away from 31P (supporting information Figure 

S6.2). 

 
Table 6.1. 13C isotropic chemical shifts (δ) and full-width-half-maximum (FWHM) linewidths of Arg4 and 

Arg11 in trehalose-protected POPE/POPG and POPC membranes.  

POPE/POPG POPC residue site 

δ (ppm) FWHM 

(ppm) 
δ (ppm) FWHM (ppm) 

Arg4 CO 171.0 4.5 171.1 5.1 

 Cα 51.7 3.5 51.7 4.2 

 Cζ 157.2 2.6 157.2 2.9 

Arg11 CO 172.1 3.8 173.1 4.2 

 Cα 53.3, 54.3 6.6 53.8 5.8 

 Cζ 157.4 2.5 157.3 2.6 

 

The above distances were extracted by fitting the experimental REDOR dephasing 

using a two-spin model. While in principle each 13C spin can couple to multiple 31P spins in 

the plane of the lipid bilayer, the large 31P-31P separation of ~10 Å due to the size of the 

headgroups, combined with the strong 13C-31P dephasing observed for the PG-1 residues, 

result in a situation where the vertical distance from the 13C to the multi-31P plane is either 

the same as or slightly shorter than the two-spin distance. Thus, it is sufficient to analyze the 

measured REDOR data using the two-spin model. Importantly, the relative proximity of 

various 13C labels to the 31P spins are independent of whether two-spin or multi-spin models 
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are used in the simulation. Detailed geometric consideration and numerical simulations for 

up to five-spin systems are given in the supporting information and Figure S6.3.  

While the distances between PG-1 and the lipid 31P are overall short, there are 

residue-specific differences. Arg11 is closer to the 31P than Arg4 by 0.6  – 1.7 Å (Table 6.2). 

In particular, the short Arg11 Cζ-P distances (4.0 Å and 5.1 Å) suggest the formation of a 

guanidinium-phosphate complex through electrostatic interaction and hydrogen bonding. 

Figure 6.1f shows a model of this complex. The presence of two Arg11 Cζ-P distances is 

attributed to differential binding of the peptide to the zwitterionic POPE and anionic POPG 

lipids: the shorter 4.0 Å distance is most likely associated with the POPG fraction. This 

hypothesis is consistent with the presence of two slightly different Cα chemical shifts of 

Arg11 in the POPE/POPG membrane. Figure 6.1 also shows that the Arg4 Cζ and Arg11 CO 

data do not match single-distance REDOR curves but require fitting by a Gaussian distance 

distribution, with half-width at half maximum of 1.5 Å and 0.9 Å, respectively, suggesting 

conformational heterogeneity at these sites.  

To further determine whether the Arg4 and Arg11 distances to 31P depend on the 

nature of the lipid headgroup, we measured the 13C-31P distances in the zwitterionic POPC 

membrane. Figure 6.2 shows that the distances are 1.0 – 2.5 Å longer in the POPC membrane 

than in the POPE/POPG membrane (Table 6.2). Thus, electrostatic attraction plays a 

significant role in the Arg-phosphate distances. Similar to the trend observed in the 

POPE/POPG membrane, Arg4 is ~1.0 Å further away from 31P than Arg11 in the POPC 

membrane.   
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Figure 6.2. 13C-31P REDOR data of (a) Cζ and (b) CO of Arg4 (squares) and Arg11 (circles) in POPC membrane, 

acquired at 263 K. (a) Best-fit Cζ-P distances are 8.0 Å for Arg4 (solid line) and 6.5 Å for Arg11 (dashed line). 

(b) Best-fit CO-P distances are 7.2 Å for Arg4, and 6.5 Å for Arg11.  

 

The peptide-lipid 13C-31P distances measured in the dry TRE-POPE/POPG membrane 

show only small differences from those in the hydrated POPE/POPG membrane. As shown 

in Figure S6.4, the Arg4 Cζ-P distance increased from 5.7±1.5 Å in the dry membrane to 6.8 

Å in the hydrated membrane, whereas the Arg11 Cζ-P distance remained unchanged. The 

CO-P distances of both Arg’s are 0.3–0.6 Å longer in the hydrated membrane. We attribute 

the small increase in 13CO-31P distances to residual motions in the hydrated membrane. This 

is confirmed by the slightly smaller 31P chemical shift span of the hydrated membrane (184 

ppm) at 226 K than that of the dry membrane at 253 K (193 ppm).  

Figure 6.3 summarizes the 13C-31P distances in the POPE/POPG and POPC 

membranes. Arg11 is the closest residue to the lipid headgroups, and the sidechain 

guanidinium Cζ are closer to 31P than the backbone atoms. Both Arg residues lie closer to the 

phosphates in the anionic membrane than in the zwitterionic membrane.  

 

 

Figure 6.3. Summary of site-specific 13C-31P distances between PG-1 and lipid 31P. (a) Distance comparison for 

various sites in the POPE/POPG membrane. (b) Comparison of distances between the POPE/POPG membrane 

(open) and the POPC membrane (filled). “Error” bars indicate distance distributions.   

 

Arg4 and Arg11 conformation 
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To confirm the β-hairpin conformation of PG-1 in the lipid membrane, we 

determined the backbone (φ, ψ) torsion angles of Arg4 and Arg11 using the dipolar correlation 

experiments HNCH 34 and NCCN 31,32. Figure 6.4 shows the HNCH (φ angle) and NCCN (ψ 

angle) data of the two residues in POPC (a, b) and POPE/POPG (c) membranes at 253 K. 

Both experiments give doubly degenerate angles due to the intrinsically uniaxial nature of the 

dipolar interaction. This gives rise to 24 = 16 combinations of backbone conformations for 

each residue. However, using the conformation-dependent Arg Cα and CO chemical shifts 

(Table 6.1) and the disulfide bond constraints, we can eliminate most solutions, leaving a 

single solution of (-120°, 159°) for Arg4  and (-90°, -75°) for Arg11 in the POPC membrane. 

Root mean-square deviation (RMSD) analysis (Figure S6.5) gives angular uncertainties of 

5˚–15˚. Thus, Arg4 adopts a nearly ideal β-strand conformation while Arg11 has a β-turn 

conformation. Changing the membrane to POPE/POPG did not affect the Arg4 φ angle 

(Figure 6.4c), but altered the Arg11 φ angle from -90° to -60°. The larger impact of the lipid 

headgroup on Arg11 conformation than Arg4 is consistent with the shorter distances of Arg11 

to the phosphate groups. Figure 6.5 summarizes the (φ, ψ) angles of Arg4 and Arg11 in POPC 

membranes.  

 

 

Figure 6.4. HNCH (a, c) and NCCN (b) data and best-fit simulations of Arg4 (squares) and Arg11 (circles) in the 

POPC membrane (a, b) and POPE/POPG membrane (c). (a) The best-fit φ angles are -120 ± 15° for Arg4 and -

90 ± 10° for Arg11 in the POPC membrane. (b) The best-fit ψ angles are 159 ± 5° for Arg4 and -75 ± 15° for 

Arg11 in the POPC membrane. (c) The best-fit φ angles are -120 ± 15° for Arg4 and -60 ± 10° for Arg11 in the 

POPE/POPG membrane. The angular uncertainty was estimated from RMSD analyses (Figure S6.5).   
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Figure 6.5. Ramachandran diagram of Arg4 and Arg11 in PG-1. Experimental (φ, ψ) torsion angles are shown in 

red squares. Blue circles indicate other (φ, ψ) angle solutions for Arg11 that are ruled out by chemical-shift and 

disulfide-bond constraints. The classical α-helix and β-sheet positions are indicated as open squares.   

 
1H spin diffusion from the lipid chain to the headgroup in the liquid-crystalline phase 

 To provide further constraints to the membrane morphology and PG-1 topology in the 

POPE/POPG membrane, we measured the 1H spin diffusion rates from the lipid chains to the 

headgroups in the absence and presence of PG-1. A 31P-1H 2D correlation experiment was 

used, where the chain (CH2)n to 31P cross peak results from distance-dependent 1H spin 

diffusion. In the LC phase where the lipid 1H-1H dipolar coupling is weakened by motion, a 

lamellar bilayer free of the peptide requires several hundred milliseconds for the (CH2)n-P 

cross peak to develop 35. If PG-1 inserts into the hydrophobic part of the membrane, or if PG-

1 binding shortens the headgroup-chain distance through chain upturns 38,39, then spin 

diffusion will be faster, giving rise to a stronger (CH2)n-P cross peak. 
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Figure 6.6. 31P-1H correlation spectra of hydrated POPE/POPG membranes with and without PG-1 after a 1H 

spin diffusion mixing time of 64 ms. (a, b) 2D spectra of POPE/POPG bilayers without and with PG-1, 

respectively. 1H cross sections are shown in (c) for the peptide-free membrane and (d) for the peptide-bound 

membrane. (e) Direct-excitation 1H spectrum of the POPE/POPG membrane for comparison. Assignment is 

obtained from 13C-1H 2D correlation (Figure S6.6). The (CH2)n cross peak in (d) is much higher than in (c). The 

low H2O cross peak in (c) is attributed to strong hydrogen bonding between the lipid headgroups and water, 

which immobilizes water and prevents their detection by the 1H T2 filter. PG-1 likely disrupts some of the lipid-

water hydrogen bonds, increasing the H2O peak intensity in (d).  

  

 Figure 6.6 compares the 31P-1H 2D spectra of POPE/POPG membranes without (a, c) 

and with (b, d) PG-1, measured with a 1H mixing time of 64 ms. Both spectra show the 

strongest cross peak from the glycerol G3 and α protons, which are closest to the phosphate 

group. The 1H chemical shift assignment is obtained from a 13C-1H 2D correlation spectrum 

shown in the supporting information Figure S6.6. Relative to the largest G3/α cross peak, the 

(CH2)n cross peak of the peptide-bound membrane is three-fold higher than that of the 

peptide-free sample. Thus, either the chain-headgroup distance is shortened in the presence 

of PG-1, or PG-1 inserts into the acyl chain region, providing a faster spin diffusion route to 

the headgroup.   
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1H spin diffusion from water to peptide in the gel phase 

 Previous experiments on PG-1 bound to DLPC 22,25, POPC 21, and POPE/POPG 

bilayers 20 showed that the peptide is well inserted into these membranes in the LC phase. To 

verify that in the gel phase PG-1 remains inserted, we carried out a gel-phase 1H spin 

diffusion experiment that transfers the water 1H magnetization on the membrane surface to 

the peptide 36,37. The depth of individual residues is estimated from the rate of the spin 

diffusion buildup curves. The experiment was carried out at ~ 240 K on DLPC-bound PG-1 

samples, which had been previously used to measure the insertion state of the peptide in the 

LC phase 22. Figure 6.7 shows the 13C-detected water-to-peptide 1H spin diffusion curves for 

four residues. Gly2 Cα and Phe12 CO exhibit the fastest buildup curves (a, b), indicating 

binding to the headgroup and glycerol backbone regions close to the water molecules. Leu5 

Cα and Val16 CO show significantly slower initial buildup rates (c, d), which are consistent 

with insertion to the beginning of the acyl chains. The relative depths are Gly2 < Phe12 < Leu5 

≈ Val16. This profile is identical to that measured in the LC phase 22. Thus, freezing the 

bilayer to the gel phase does not change the insertion state of PG-1.  
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Figure 6.7. Gel-phase 1H spin diffusion from water to PG-1 in DLPC bilayers at 240 K. Red symbols: Data of 
13C-labeled residues in PG-1. Black symbols: data of lipid glycerol G2 and (CH2)n signals. The Leu5 Cα curve 

is reproduced as dashed lines in (a, b, d) for comparison. The fast buildup of Gly2 Cα and Phe12 CO and the 

slower buildup curves of Leu5 Cα and Val16 CO are consistent with the paramagnetic relaxation enhancement 

data on the same samples in the LC phase 22.  

 

Discussion 

 The (φ, ψ) torsion angle data shown here indicate that PG-1 adopts an ideal β-strand 

conformation at Arg4 and β-turn torsion angles at Arg11, confirming that the peptide has a β-

hairpin fold under the solid-state NMR experimental conditions. This rigid disulfide-linked 

β-hairpin is ~30 Å long based on solution NMR structure of the peptide 14.  

 The 13C-31P REDOR distance data indicates that no measured residues in PG-1 are far 

from the 31P atoms. The distances are 4.0 – 6.5 Å in the POPE/POPG membrane and 6.5 – 

8.0 Å in the POPC membrane. This close proximity contrasts with the much longer 13C-31P 

distances between the lipid chains and the headgroups. What membrane morphology and 

peptide topology can give rise to similarly short 13C-31P distances for four widely dispersed 

residues in a β-hairpin?  
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Figure 6.8. Schematic structural models of PG-1 in the POPE/POPG membrane. (a) PG-1 is bound to the 

membrane surface. This model can be ruled out by absolute orientation measurements and 1H spin diffusion 

data. (b) Peptide oligomers thin the membrane without changing the lipid orientation. Leu5 Cα and Arg4 Cα 

should differ in their 13C-31P distances by 3.6 Å, which disagrees with the REDOR data. (c) Peptide oligomers 

cause toroidal pores in the membrane, so that the local 31P plane is roughly parallel to the β-strands, giving rise 

to similar 13C-31P distances to Leu5 Cα and Arg4 Cα. In models (b) and (c), only part of the β-barrel is drawn 

for clarity.  

 

 Figure 6.8 illustrates three possible scenarios of membrane morphology and peptide 

insertion states that satisfy the distance data. First, the short distances could result from PG-1 

being bound to the lipid bilayer surface (Figure 6.8a). However, this is inconsistent with 
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various orientation and depth data acquired on a number of lipid membranes. In LC-phase 

DLPC (12:0) bilayers PG-1 β-strands were found to be tilted by ~55˚ from the bilayer normal 

based on 13C and 15N anisotropic chemical shifts on glass-plate oriented samples 25. In the 

longer-chain lipid diphytanoylphosphatidylcholine (DPhPC, 16:0 [(CH3)4]), oriented circular 

dichroism experiments by Huang and coworkers indicated that PG-1 is also transmembrane 

at peptide-lipid molar ratios larger than ~1:30 23,40. Since these orientation data were obtained 

on macroscopically aligned samples, the transmembrane orientation is referenced to the 

external plane of glass plates, independent of the local curvature of the lipid membrane. In 

addition to orientation constraints, 1H spin diffusion from the lipid chains to the peptide 

indicated that PG-1 is in close contact with the acyl chains in both POPC membranes 21 and 

POPE/POPG membranes 20 in the LC phase, thus the peptide cannot exclusively lie on the 

membrane surface. The 2D 31P-1H spin diffusion spectra shown here confirm the 

participation of PG-1 in the hydrophobic part of the membrane. Finally, cooling the 

membrane to the gel phase does not change the depth of insertion of PG-1, since the gel-

phase water-to-peptide 1H spin diffusion data gave the same depth profile as the LC-phase 

Mn2+ paramagnetic relaxation enhancement data 22. Thus, at the peptide-lipid molar ratios 

used here, PG-1 adopts a stable inserted state in lipid bilayers with varying thicknesses and 

phases.  

 Can the distance data be explained by membrane thinning, where lipid bilayers thin 

sufficiently to give short distances to all four residues in the peptide (Figure 6.8b)? This 

possibility can also be ruled out. Since the thinned membrane remains lamellar, the 31P plane 

would still be roughly perpendicular to the transmembrane β-strands. This would require 

Leu5 Cα and Arg4 Cα to differ in their 13C-31P distances by ~3.6 Å, because the distance 

between two consecutive α carbons in a β-strand is fixed by the covalent geometry to be 3.6 

Å along the β-strand axis. Instead, we measured identical distances of 6.5 Å for Leu5 Cα and 

Arg4 Cα to 31P. Moreover, the fact that short distances are found for backbone as well as the 

sidechain carbons rules out snorkeling of the Arg sidechain to the membrane surface 24,41. 

 These considerations lead to the conclusion that, for Arg4 and Leu5 to have equal Cα-

P distances, the local 31P plane must be roughly parallel instead of perpendicular to the β-

strand axis. Since the PG-1 β-strands have an externally referenced transmembrane 
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orientation, this parallelity means some lipid molecules must turn their orientation to embed 

their headgroups in the hydrophobic region of the membrane, thus establishing equidistant 

contacts to Arg4 and Leu5 Cα (Figure 6.8c). The presence of rotated lipid molecules that 

merge the two leaflets of lamellar bilayers is the key signature of the toroidal pore 42,43.  

 This toroidal pore model is strongly supported by static 31P lineshapes of 

POPC/POPG, POPE/POPG, and POPC membranes in the presence of PG-1. Both glass-plate 

aligned samples 44,45 and unoriented liposome samples 25 give rise to spectra with a 

prominent broad peak centered at the isotropic shift, indicating the presence of non-lamellar 

lipids with near isotropic morphology. On the other hand, the remaining aligned peak or 

powder intensity in these spectra indicates that residual lamellar bilayer remains in these 

samples, as required by the toroidal pore model, thus complete micelle formation is unlikely.   

 How can the β-strands lie close to both the headgroups and the acyl chains, as 

constrained by the 13C-31P distances and the lipid-to-peptide 1H spin diffusion data? We 

hypothesize that the rotated lipid molecules may partially intercalate between the β-strands, 

such that both the headgroups and the acyl chains are in close contact to the β-strands (Figure 

6.8c). 2D 13C-13C correlation spectra of fibrilized PG-1 indicate that the N-strand - N-strand 

interface is more loosely packed than the C-strand - C-strand interface 46,47, which may allow 

lipid intercalation.  

 Similar to PG-1, short peptide-headgroup distances, short peptide-lipid chain 

distances, and enhanced lipid headgroup-chain contacts, were reported for an α-helical 

magainin analog, K3, which contains no Arg but only Lys as its cationic residues 48. 

Intriguingly, the short peptide – headgroup distances occur only for ~30% of K3, as 

manifested by the plateau value of the REDOR curves. This contrasts with the 100% 

REDOR dephasing of PG-1. The 31P lineshapes of the K3-containing membrane also do not 

exhibit disorder. Thus, the Arg-cationic PG-1 has stronger membrane-disruptive ability and 

shorter distances to lipids than the Lys-cationic K3.  

The 13C-31P distance data of PG-1 not only point to the toroidal pore as the only 

possible lipid organization near the peptide, but also suggests that guanidinium-phosphate 

association may be the driving force for toroidal pore formation: the Arg residues may drag 

the phosphate groups along to overcome the free energy barrier of inserting into the 
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hydrophobic part of the membrane. This anion-mediated translocation of guanidinium groups 

has been reported for oligoarginines from water to chloroform and from water to anionic 

lipid bilayers 49. Comparisons of different counterions’ abilities for polyarginine 

translocation revealed that a combination of amphiphilic phosphate anions such as the 

phosphatidylglycerol lipids and hydrophilic phosphates maximize the translocation across the 

membrane 50.  

The nature of the guanidinium - phosphate interaction is ionic. This is supported by 

the 1.0 – 2.5 Å shorter C-P distances in the anionic POPE/POPG membrane than in the 

zwitterionic POPC membrane. The cationic trimethylamine group in the POPC headgroup 

should repel the guanidinium cation, weakening the guanidinium-phosphate complex. The 

ionic interaction is also supported by the 1.0 – 2.0 Å shorter distances of Arg11 to 31P than 

Arg4. Arg11 is one of three consecutive Arg’s at the β-turn and thus belongs to a much larger 

charge cluster than Arg4, which is surrounded by hydrophobic residues. Thus, electrostatic 

attraction between guanidinium cations and phosphate anions play an important role in 

peptide insertion and membrane defect formation.  

 A second possible contribution to stable guanidinium-phosphate complexation is 

hydrogen bonding. In the absence of steric hindrance, the guanidinium ion can form as many 

as four hydrogen bonds with two phosphate groups 51. This bidentate complex is unstable for 

the basic lysine, which may explain the relative abundance of Arg over Lys in cationic AMPs. 

The short Arg11 Cζ-P distances of 4.0 Å and 5.1 Å strongly suggest the existence of such a 

bidentate complex.  

 We hypothesize that this ionic and hydrogen-bond-stabilized guanidinium-phosphate 

complexation may be a general mechanism for the translocation of Arg residues in 

membrane peptides and proteins, and the resulting membrane defect may be quite common. 

For example, the Arg-rich TAT(48-60) peptide induces rod-shaped lipid micelles in DMPC 

membranes 52. The Arg-rich cyclic defensin RTD-1 causes micron-diameter lipid cylinders 53. 

In KvAP potassium channel, the Arg-rich S4 segment is reported to move by ~20 Å across 

the membrane during channel opening 54. MD simulations of the S4 helix suggests that the 

organization of POPC bilayers is highly perturbed in the vicinity of the helix, with a 

hydrogen-bonded network of water and phosphate groups formed around the guanidinium 
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ions 12. Such lipid counterions are shown experimentally here for PG-1. They shield the 

guanidinium ion from the lipid acyl chains, thus reducing the free energy of membrane 

insertion 11.  

 One difference between PG-1 and other transmembrane cationic proteins is its β-

sheet conformation, which promotes oligomerization through backbone   N − H"O = C 

hydrogen bonds 20,47. This self-assembly may further facilitate the insertion of multiple Arg’s 

by reducing the lipid chain-peptide interface.  

 

Conclusion 

 The first measurement of the distances between Arg residues in a cationic membrane 

peptide and the 31P of lipid headgroups is presented. The uniformly short 13C-31P distances 

for multiple sites in PG-1 indicate that the β-hairpin peptide induces toroidal pores in the 

membrane, where some lipid headgroups become embedded in the hydrophobic region of the 

bilayer. Comparison of distances in anionic membranes and zwitterionic membranes suggest 

that the driving force for the toroidal pore formation is guanidinium-phosphate association, 

which neutralizes the guanidinium ions to facilitate their insertion into the hydrophobic part 

of the membrane. Thus, PG-1 may pull the phosphate groups along as it inserts, causing 

toroidal pores. We propose that this guanidinium-phosphate complexation may be a general 

phenomenon among membrane-lytic Arg-rich antimicrobial peptides.  
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Multi-spin consideration of the 13C-31P REDOR data 

 The experimental 13C-31P REDOR data were simulated using a two-spin model to 

give the distances. It is relevant to consider how inclusion of multiple 31P spins coupled to 

each 13C affects the distance results. The typical lipid headgroup area is ~65 Å2. This 

corresponds to an average 31P-31P distance of ~9 Å in the plane of the membrane. With the 

presence of 20% trehalose, which can partially intercalate between the headgroups, we 

approximate the P-P separation as 10 Å. Under this geometric constraint, we constructed 

multi-31P-spin and single 13C spin networks and calculated their heteronuclear REDOR 

curves using the SIMPSON program 1. Figure S6.3(a-d) shows the best-fit REDOR curves 

for the Arg11 Cζ data in POPE/POPG membrane assuming one, two, and three 31P spins. In 

the simple two-spin case (one 13C and one 31P), single-distance calculations do not fit the data 

well, as shown by the best-fit curve of 4.5 Å (a, dashed line). Instead, a 1:1 mixture of 4.0 Å 

and 5.1 Å is necessary.  

 For a three-spin system containing one 13C and two 31P atoms, the 13C can be close to 

one 31P spin and far from the other. This geometry gives a short 13C-31P distance of 4.5 Å and 

a long distance of ~8.9 Å while still maintaining the 31P-31P separation of 10 Å (Figure 

S6.3b). The resulting three-spin REDOR curve is very similar to the unsatisfactory single-

distance two-spin fit (a), indicating that in the presence of a short distance, longer distances 

have negligible effects on the REDOR dephasing. Having more than three 31P spins does not 

change this conclusion, as long as a single short distance dominates the dipolar coupling. 
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Alternatively, a three-spin geometry may contain two similar 13C-31P distances (Figure 

S6.3c). In this case, we find that two equal distances of 5.2 Å fit the data similarly well as the 

mixed distance two-spin fit (a). Thus, an equilateral three-spin geometry is a possible 

solution. This, however, only increases the reported 13C-31P distances by an average of 0.6 Å 

compared to the two-spin simulation.  

 When four spins with three equal 13C-31P distances are considered (Figure S6.3d), the 

minimum 13C-31P distance allowed by the 31P-31P constraint is 5.8 Å, which is obtained when 

the 13C spin lies in the plane of the 31P atoms. This is a sterically unfavorable situation, but 

even with these shortest distances, the simulated REDOR curve still decays more slowly than 

the experimental data, indicating that the more physical and longer distances will only 

deviate further from the data. Therefore, for strong observed dipolar couplings, the inclusion 

of multiple 31P spins in the simulation either minimally affects the distance results compared 

to the two-spin simulation or is unphysical.  

 When the observed REDOR dipolar dephasing is slow, indicating overall longer 

distances, 13C coupling to multiple 31P spins is more likely and increases the individual 13C-
31P distances more significantly compared to the two-spin distance result. Figure S6.3e plots 

the individual 13C-31P distances as a function of the total number of spins in the simulation. 

From now on we only consider the geometry where all 13C-31P distances are equal in the 

multi-spin network. For example, a five-spin simulation of an apparent two-spin distance of 

8.0 Å increases the individual 13C-31P distances to 10 Å. However, in the presence of 

multiple 31P spins the real distance of interest is not the individual 13C-31P distances but the 

vertical distance from the 13C to the 31P plane (Figure S6.3g). This vertical distance is shorter 

than the individual 13C-31P distances, and can be exactly calculated from the simulation 

results of Figure S6.3e. Figure S6.3f shows that this vertical distance decreases as the number 

of spins increases, and reaches a plateau at long distances. Moreover, this plateau value for 

the vertical distance is similar to or slightly shorter than the apparent two-spin distance. For 

example, a two-spin distance of 8.0 Å is fit by a vertical distance of 7.0 Å in a five-spin 

geometry. Figure S6.3f also confirms that for short two-spin distances such as 5.0 Å, the 

multi-spin consideration is invalid due to steric conflict, as unphysically short vertical 

distance is obtained.  
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 The average 31P-31P separation of 10 Å gives a 31P-31P dipolar coupling of ~20 Hz, 

which is spun out by MAS. Simulation of the REDOR curve for a 13C-31P distance of 7.4 Å 

in a four-spin system (one 13C and three 31P spins) confirms that the 31P-31P homonuclear 

coupling does not influence the REDOR dephasing.  

 

 

Figure S6.1. 13C double-quantum filtered spectra of Arg-labeled PG-1 in the POPC/trehalose membrane. (a) 

Arg11 labeled PG-1.  (b) Arg4 labeled PG-1. Note the difference in the Cα and CO chemical shifts between the 

two residues. The Arg Cβ signal is not resolved from Cγ and thus cannot be used for secondary structure 

analysis. The spectra were measured at 253 K under 5.5 kHz MAS.  
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Figure S6.2.  13C{31P} REDOR data of hydrated POPE bilayers at 226 K. (a) POPE chemical structure and 

nomenclature. (b) REDOR decays of the ω-2 (black), sn-1 CO (green), sn-2 CO (magenta) and glycerol G2 

(blue) carbons. (c) REDOR decays of (CH2)n (open red circles) carbons, the double bond carbon (filled red 

squares) and the carbons next to the double bond (black diamond). (d) REDOR decays of ω-1 carbons (red) and 

the ω CH3 carbon (black).  

 

 
Figure S6.3. Simulated 13C-31P REDOR curves for one 13C and multiple 31P spins. (a) Two-spin simulations. (b) 

Three-spin simulation. (c) Four-spin simulations. (d) Five-spin simulations. The Arg11 Cζ data is shown. The 

geometry of the spin systems is shown in each panel in (a-d). (e) Individual 13C-31P distances as a function of 
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the total number of spins when all 13C-31P distances in each cluster are equal. (f) The vertical distance between 

the 13C and the 31P plane as a function of the total number of spins. The vertical distance approaches the two-

spin distance with increasing number of spins and with increasing distances. 

 

Figure S6.4. Comparison of 13C{31P} REDOR data for TRE-POPE/POPG membranes (filled symbols) and 

hydrated POPE/POPG membranes (open symbols). (a) REDOR decays of Arg4 Cζ. The best fit is 5.7 ± 1.5 Å 

(Gaussian distribution) for the dry membrane and 6.8 Å for the hydrated membrane. (b) REDOR decays of Arg4 

CO. The best fit is 6.2 Å for the dry membrane and 6.8 Å for the hydrated membrane. (c) REDOR decays of 

Arg11 Cζ. The best fits for both the dry and hydrated membranes are a 1 : 1 mixture of 4.0 Å and 5.1 Å. (d) 

REDOR decays of Arg11 CO. The best fit is 5.6 ± 0.9 Å (Gaussian distribution) for the dry membrane and 5.9 Å 

for the hydrated membrane.   

 

 The larger difference in the Arg4 13Cζ-31P distance between the hydrated and dry 

membranes compared to Arg11 may be due to hydrogen bonding differences. In the hydrated 

membrane Arg4 - 31P hydrogen bonding may be mediated by water molecules whereas in the 

trehalose-protected membrane hydrogen bond may be direct, since the bulky trehalose cannot 

easily intercalate between the peptide and the lipid headgroup. In comparison, Arg11 at the β-

turn has less steric conflict than Arg4 in the middle of the β-strand, and thus may be able to 
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form direct hydrogen bonds with the phosphate in both membranes, giving identical 13Cζ-31P 

distances.  

 

 

Figure S6.5. Root mean-square deviation (RMSD) of the (φ, ψ) angle data for Arg4 and Arg11. (a) RMSD of the 

Arg4 HNCH data in the TRE-POPC membrane. The minimum occurs at φ = 120° with an uncertainty of 15°. (b) 

RMSD of the Arg11 HNCH data in the TRE-POPC membrane. Two minima were found at φ = -90° and φ = -

150° with an uncertainty of 10°. (c) RMSD of Arg4 NCCN data in the TRE-POPC membrane. Two minima 

were found at φ = ±159° with an uncertainty of 5°. (d) RMSD of the Arg11 NCCN data in the TRE-POPC 

membrane. Two minima were found at φ = ±75° with an uncertainty of 15°. Dashed lines indicate the 

experimental RMS noise.   
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Figure S6.6. 1H chemical shift assignment of POPE/POPG membranes by 13C-1H 2D correlation. (a) POPE and 

POPG chemical structures and the nomenclature for the various functional groups. (b) 13C-1H heteronuclear 

correlation spectrum of the membrane, measured at 303 K under 5 kHz MAS. The 13C chemical shift 

assignment is based on the literature 2. Due to the fast uniaxial mobility of the lipid molecules, MAS alone is 

sufficient to give a high-resolution 1H dimension, without the need for 1H homonuclear decoupling. 

Reference 

1. Bak, M.; Rasmussen, J. T.; Nielsen, N. C., J. Magn. Reson. 2000, 147, (2), 296-330. 

2. Husted, C.; Montez, B.; Le, C.; Moscarello, M. A.; Oldfield, E., Magn. Res. Med 

1993, 29, 168-178. 
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Abstract  

 The site-specific motion of Arg residues in a membrane-bound disulfide-linked 

antimicrobial peptide, protegrin-1 (PG-1), is investigated using magic-angle spinning solid-

state NMR, to better understand the membrane insertion and lipid interaction of this cationic 

membrane-disruptive peptide. C-H and N-H dipolar couplings and 13C chemical shift 

anisotropies were measured in the anionic POPE/POPG membrane and found to be reduced 

from the rigid-limit values by varying extents, indicating the presence of segmental motion. 

An Arg residue at the β-turn region of the peptide shows much weaker spin interactions, 

indicating larger amplitudes of motion, than an Arg residue in the β-strand region of the 

peptide. This is consistent with the exposure of the β-turn to the membrane surface and the 

immersion of the β-strand in the hydrophobic middle of the membrane, and supports the 
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previously proposed oligomerization of the peptide into β-barrels in the anionic membrane. 
13C T2 and 1H T1ρ relaxation times indicate that the β-turn backbone undergoes large-

amplitude intermediate-timescale motion in the fluid phase of the membrane, causing 

significant line broadening and loss of spectral intensity. This study illustrates the strong 

correlation between the dynamics and the structure of membrane proteins and the capability 

of solid-state NMR spectroscopy for providing detailed information on site-specific 

dynamics in complex membrane protein assemblies.  

Keywords: membrane proteins, molecular dynamics, antimicrobial peptides, solid-state 

NMR, arginine.  

 

Introduction 

 Molecular motion is common in membrane proteins and is often intimately related to 

the function and lipid-interaction of these molecules.  Solid-state NMR (SSNMR) 

spectroscopy is a versatile tool to characterize molecular dynamics on a wide range of 

timescales (picoseconds to seconds) and to determine the amplitude of anisotropic motion. 

Large-amplitude segmental motion has been reported, for example, for a bacterial toxin that 

spontaneously inserts into the lipid membrane as a result of its intrinsic conformational 

plasticity [1], a lipidated Ras signaling protein [2], the catalytic domain of a membrane-bound 

enzyme [3], and the loops of the seven-transmembrane-helix protein rhodopsin [4]. In addition 

to internal segmental motion, whole-body reorientation has been discovered for many small 

membrane peptides of both β-sheet and α-helical secondary structures [5-7].  

 Protegrin-1 (PG-1) is a broad-spectrum antimicrobial peptide found in porcine 

leukocytes [8, 9]. It is a β-hairpin molecule stabilized by two disulfide bonds and contains six 

Arg residues (RGGRLCYCRRRFCVCVGR). PG-1 achieves its antimicrobial function by 

forming non-selective pores in the microbial cell membrane that disrupt the membrane’s 

barrier function [10, 11]. Recently, the high-resolution oligomeric structure of PG-1 at the pores 

was determined using 1H and 19F spin diffusion NMR techniques [12]. The peptide was found 

to self-assemble into a transmembrane β-barrel in bacteria-mimetic anionic POPE/POPG 

membranes. 13C-31P distance constraints indicate that the Arg residues in these 

transmembrane β-barrels are complexed with lipid phosphates [13], suggesting that the charge 
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neutralization by ion pairing reduces the free energy of peptide insertion into the 

hydrophobic part of the membrane, and the consequent tethering of lipid headgroups may be 

the cause for toroidal pore formation.  

The experiments that yielded the equilibrium oligomeric structure of PG-1 and the 

toroidal pore morphology of the lipid membrane were carried out at low temperatures of 

about –40˚C, in the gel phase of the membrane, to eliminate any motion that would average 

the distance-dependent dipolar couplings. On the other hand, PG-1 carries out its 

antimicrobial action in the liquid-crystalline (LC) phase of the membrane, where it is 

expected to be more mobile. How the dynamics of PG-1 and its Arg sidechains affect 

toroidal pore formation has not yet been studied. If Arg-phosphate complex formation is true, 

then the functional groups involved in the complex – the guanidinium ions, the lipid 

phosphates, and possibly water – should be less mobile than in their respective bulk 

environments. Thus, understanding Arg motion in PG-1 in the lipid membrane may provide 

additional insight into guanidinium-phosphate interaction. More generally, although the 

motion of long-chain amino acid residues has begun to be investigated in microcrystalline 

proteins [14-16], motion of the same residues in membrane proteins is still scarcely studied by 

NMR. Arg is particularly common in many medically important membrane peptides and 

proteins such as antimicrobial peptides (AMPs) [17], cell-penetrating peptides [18, 19], and 

voltage-sensing domains of ion channels [20].  

 In this work we report the amplitudes of microsecond timescale motions of Arg and 

other residues in PG-1 bound to the POPE/POPG membrane. We found that an Arg in the β-

strand part of the molecule, which is embedded in the hydrophobic interior of the membrane, 

is much less mobile than an Arg in the β-turn part of the molecule, which is exposed to the 

membrane surface. This is consistent with the oligomeric structure and lipid interaction of 

this antimicrobial peptide.  

 

Results 

 We first characterized the dynamic structure of PG-1 in POPE/POPG bilayers by 

variable-temperature 13C and 15N CP-MAS experiments. A series of CP spectra were 

collected between 243 K and 308 K for PG-1 containing U-13C, 15N-labeled Arg4, Leu5, and 
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Arg11, and 15N-labeled Phe12. As shown in Figure 7.1, the Cα peaks of Arg4 and Leu5 are 

much sharper and higher than the Cα peak of Arg11. At 295 K, the full widths at half-

maximum (FWHM) of Arg4 and Leu5 Cα’s are ~3 ppm, compared to 6 ppm for Arg11 Cα. As 

the temperature decreases, the Arg11 Cα intensity increases significantly. This suggests that 

in the liquid-crystalline phase of the membrane Arg11 backbone undergoes large-amplitude 

intermediate-timescale motion that becomes frozen in the gel phase of the membrane, while 

the Arg4 and Leu5 Cα sites are more rigid. In other words, the β-turn backbone is more 

mobile than the β-strand backbone. A similar trend is observed in the 15N CP-MAS spectra 

(Figure 7.2). The backbone Nα peaks of Arg4 and Leu5 are sharp and well resolved, with 

FWHM of 2 – 3 ppm at 283 K, while the Arg11 Nα peak is broad and overlaps with Phe12 Nα, 

giving a FWHM of 9 ppm for the combined peak at 283 K. Only at 243 K do the Arg11 Nα 

and Phe12 Nα peaks become resolved. We assigned the Nα peaks by 13C-15N 2D correlation 

experiments (data not shown) [21].  

 
Table 7.1. 13C apparent linewidths (Δ*) and homogeneous linewidths (Δ) of PG-1 in POPE/POPG membrane at 

283 K and 243 K. The apparent linewidths are read off from 1D CP spectra. The homogeneous linewidths are 

obtained from T2 measurements as Δ = 1/πT2.  The linewidths were measured at a 13C Larmor frequency of 100 

MHz.  

283 K 243 K 
Residue Sites 

Δ* / Hz Δ / Hz Δ* / Hz Δ / Hz 

Arg4 Cα 272 199 222 118 

 Cδ 222 187 493 289 

 Cζ 111 84 201 80 

Arg11 Cα 473 289 604 133 

 Cδ 161 106 534 265 

 Cζ 81 53 222 94 
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To distinguish the contribution of static structural heterogeneity versus dynamic 

disorder to the linewidths, we measured the 13C T2 of Arg4 and Arg11 at two different 

temperatures, 283 K and 243 K, using the Hahn echo experiment. Table 7.1 shows the 13C 

apparent linewidths, Δ*, read off from the CP spectra, and the 13C homogeneous linewidths, 

Δ, obtained from the T2 values according to Δ = 1 πT2 . At 243 K, the homogeneous 

linewidths of Arg4 and Arg11 are similar, indicating that motion is largely frozen. However, 

the apparent linewidth of Arg11 backbone Cα (604 Hz, or 6.0 ppm) is much larger than Arg4 

Cα (222 Hz, or 2.2 ppm), indicating that there is much larger conformational disorder at the 

β-turn backbone than at the β-strand. In comparison, the sidechains of Arg4 and Arg11 at 243 

K exhibit similar homogeneous linewidths as well as similar apparent linewidths, indicating 

that both the static and dynamic heterogeneities are comparable for the two sidechains. At 

283 K, Arg11 Cα exhibits both larger Δ and larger Δ* than Arg4 Cα, indicating that the β-turn 

backbone has greater dynamic as well as static disorder than the β-strand backbone. In 

contrast, the sidechain of Arg11 has narrower Δ and Δ* than the Arg4 sidechain, indicating 

that Arg11 sidechain undergoes faster motions than Arg4.  
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Figure 7.1. 13C CP-MAS spectra in PG-1 bound to the POPE/POPG membrane (P/L = 1:12.5) from 243 K to 

308 K. A) Amino acid sequence of PG-1. Labeled residues are shaded. B) 13C CP-MAS spectra of Arg4, C) 13C 

CP-MAS spectra of Leu5, D) 13C CP-MAS spectra of Arg11. Peptide peaks are assigned and annotated.  
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Figure 7.2. 15N CP-MAS spectra of PG-1 in the POPE/POPG membrane at various temperatures. A) Arg4, Leu5. 

B) Arg11 and Phe12. Assignments were obtained from 13C-15N 2D correlation spectra (not shown).  

 

To obtain information on the motional amplitudes of the Arg sidechains, especially 

the guanidinium group, we measured the 13C chemical shift anisotropy (CSA) of Cζ, the 

center of the guanidinium ion. We chose the intermediate temperature of 283 K for the CSA 

and the subsequent dipolar coupling experiments, since at this temperature the spectra have 

the best overall combination of resolution and sensitivity. The theoretical phase transition 

temperature of the POPE/POPG (3:1) membrane is 291 K, thus the spectra theoretically 

correspond to the gel-phase membrane, but the phase transition is likely broadened by the 

peptide. The peptide mobility closer to the physiological temperature may be extrapolated 

from the 283 K data and is expected to be higher, but the differences between residues should 

be similar. We used the 2D separation of undistorted powder patterns by effortless recoupling 

(SUPER) experiment [22] to recouple the CSA interaction and correlate it with the isotropic 
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13C chemical shift. Figure 7.3 shows the 2D SUPER spectra and 1D cross sections of the 

model compound Fmoc-Arg(MTR)-OH, and Arg4 and Arg11 in PG-1 bound to the 

POPE/POPG membrane. For the dry powder sample Fmoc-Arg(MTR)-OH, the Cζ cross 

section yielded a CSA anisotropy parameter δ, defined as the difference between the largest 

principal value δzz and the isotropic shift δiso, of 78 ppm. This CSA is the rigid-limit value, 

since C-H dipolar couplings of the sidechain carbons in this model compound have nearly 

rigid-limit values (Table 7.2). In comparison, PG-1 Arg4 and Arg11 Cζ both give reduced 

CSA’s: the Arg4 Cζ δ  is 47.3 ppm whereas the Arg11 Cζ CSA is much smaller, 10.3 ppm. 

These correspond to a motional scaling factor of 0.13 for Arg11 and 0.61 for Arg4. Thus, the 

Arg11 sidechain has larger-amplitude motion than Arg4. Since T2 data indicate narrower 

homogeneous linewidths of Arg11 Cδ and Cζ than Arg4, the Arg11 sidechain motion is both 

faster and larger in amplitude than the Arg4 sidechain.  

 
Table 7.2. Dipolar order parameters and CSA motional scaling factors a of PG-1 residues at 283 K and of three 

crystalline model compounds at 295 K.  

 

Sites Arg4 Arg11 Fmoc-Arg Arg-HCl Leu5 Leu 

Nα 1.05 0.70 - - 0.95 - 

Cα 0.93 0.70 0.91 0.91 0.93 0.95 

Cβ 0.61 - 0.86 0.91 0.56 0.93 

Cγ 0.63 - 0.91 0.91 0.44 - 

Cδ 0.48 0.21 0.91 1.02 0.43 0.34 

Nε 0.48 0.24 - - - - 

Cζa 0.61 0.13 - - - - 

Nη 0.36 0.28 - - - - 
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Figure 7.3. Arg Cζ chemical shift anisotropies from the SUPER experiment. The 2D SUPER spectra are shown 

in A), C), E) and the corresponding Cζ 1D cross sections are shown in B), D), F).  A, B) Fmoc-Arg(MTR)-OH. 

C, D) PG-1 Arg4. E, F) PG-1 Arg11. The PG-1 data were measured at 283 K in the POPE/POPG membrane.  

 

 To obtain more quantitative information on the motional amplitude, we measured C-

H and N-H dipolar couplings, whose tensor orientation and rigid-limit coupling strength are 

exactly known. The dipolar couplings were readily measured using the 2D dipolar-chemical 

shift correlation (DIPSHIFT) experiment to yield the bond order parameter, S = δ δ . Figure 

7.4 shows representative DIPSHIFT curves of Arg4 and Arg11 in POPE/POPG-bound PG-1. 

Cα-H represents the backbone, while Cδ-H2, Nε-H and Nη-H2 represent the sidechains. The 

order parameters are compiled in Table 7.2. Both the backbone Nα and Cα of Arg4 and Leu5 

exhibit nearly rigid-limit couplings, with order parameters of 0.93-1.00. In contrast, the Arg11 
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Cα and Nα have significantly lower order parameters of 0.70. Thus, the β-strand backbone 

of the peptide is immobilized in the POPE/POPG membrane at this temperature, while the 

Arg11 backbone retains significant local segmental motion. For resolved sites (Cδ, Nε, and 

Nη) in the sidechains, Arg4 and Leu5 also have stronger dipolar couplings than those of Arg11, 

indicating that the β-strand sidechains have smaller amplitudes of motion, consistent with the 

variable-temperature spectra and the CSA results. Some 13C sites in the sidechain, such as 

Arg Cβ, Cγ, Leu Cγ and Cδ, overlap with the lipid peaks, so we used a double-quantum (DQ) 

filtered DIPSHIFT experiment to suppress the lipid signals and measure the C-H couplings 

of these Arg sites [1]. Figure 7.5 shows representative 1D DQ spectra and DQ-DIPSHIFT 

dephasing curves of Arg4 and Leu5. Arg11 has prohibitively low sensitivity in the DQ-

DIPSHIFT experiment due to unfavorable motional rates at this temperature and is thus not 

measured. Table 7.2 shows that in general, the sidechain order parameters decrease with 

increasing distance from the backbone. Arg11 at the β-turn, which is close to the membrane 

surface, has much higher amplitudes of motion, or much lower order parameters, than Arg4 

and Leu5 in the β-strand part of the peptide, which is embedded in the membrane [12].  
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Figure 7.4. 13C-1H and 15N-1H DIPSHIFT curves of several sites of Arg4 (closed squares) and Arg11 (open 

circles) in PG-1 at 283 K. A) Cα-H. B) Cδ-H2. C) Nε-H. D) Nη-H2. Arg11 gives weaker couplings than Arg4, 

indicating larger motional amplitudes.  

 

 
Figure 7.5. 1D 13C DQ filtered spectra and DQ-DIPSHIFT curves of Arg4 and Leu5 in PG-1 in the POPE/POPG 

membrane. A) 1D DQ spectrum of Arg4. The Cβ and Cγ peaks no longer overlap with the lipid peaks. B) 

DIPSHIFT curves of Arg4 Cβ (squares) and the crystalline amino acid Gly Cα (circles). The Gly Cα data give 

the rigid-limit coupling for CH2 groups, which is 22.9 kHz. C) DIPSHIFT curve of Arg4 Cγ. D) 1D DQ 

spectrum of Leu5. The Cγ and Cδ peaks no longer overlap with the lipid peaks. E) DIPSHIFT curve of Leu5 Cγ. 

F) DIPSHIFT curves of Leu5 Cδ (diamonds) and the crystalline amino acid Ala Cβ (circles). The Ala Cβ data 

give the rigid-limit coupling for methyl groups, which is 8.1 kHz. This is one-third of the one bond C-H 

coupling due to the three-site jump of the CH3 group. 

 

To obtain further information on the rates of motions of these residues, we measured 

the 1H T1ρ relaxation times, listed in Table 7.3. Most sites in Arg4, Leu5 and Arg11 have 

similar 1H T1ρ values (1.6 – 2.6 ms), except for Arg11 Hα, which has a much shorter T1ρ (0.83 

ms) than Arg4 Hα (2 ms). This is consistent with the 13C T2 data indicating more pronounced 

intermediate-timescale motion of the β-turn backbone compared to the β-strand backbone.   
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Table 7.3. 1H T1ρ (ms) of POPE/POPG-bound PG-1 at 283 K and of crystalline Arg.HCl at 295 K. Experimental 

uncertainties are given in the parentheses. The 1H spin-lock field strengths were 50 kHz in the 15N-detected 

experiment and 62.5 kHz in the 13C-detected experiments.   
Sites Arg4 Arg11 Arg . HCl 

HN 2.6 (0.2) 2.2 (0.3) - 

Hα 2.0 (0.1) 0.8 (0.1) 8.8 

Hδ 1.6 (0.1) 1.9 (0.1) 9.5 

Hε 2.2 (0.2) 2.6 (0.2) 8.8 

Hη 1.9 (0.2) 1.8 (0.1) 8.8 

 

Discussion 

  The solid-state NMR data shown here indicate that the β-turn backbone undergoes 

large-amplitude segmental motion on the microsecond timescale, while the β-strand 

backbone is mostly immobilized in the POPE/POPG membrane in the liquid-crystalline 

phase. The latter is consistent with the previously reported immobilization of PG-1 strand 

residues in POPC/POPG membranes [23]. Concomitant with the backbone mobility difference, 

the sidechains also exhibit dynamic differences: Arg11 has much lower order parameters than 

Arg4 (Table 7.2), indicating large motional amplitudes. Both membrane-associated Arg’s are 

much more mobile than the crystalline compound Arg . HCl.  

 The dynamic difference between Arg4 and Arg11 can be understood in terms of the 

self-assembly of PG-1 and the peptide-lipid interactions. The β-strands containing Arg4 and 

Leu5 are involved in intermolecular association with other PG-1 molecules through N–

H…O=C hydrogen bonds to form β-barrels [12, 24], thus these residues should experience 

hindered motion. The strand aggregation is important to PG-1 antimicrobial activity. 

Mutation of Val14 to N-methyl-Val, which disrupted hydrogen bonding of the Val14 backbone 

to its intermolecular partner, resulted in much lower antimicrobial activity [25]. In contrast, the 

β-turn Arg11 is not involved in intermolecular hydrogen bonding and is located near the 

membrane surface, thus has more motional freedom.  
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A second contributing factor to the different sidechain dynamics of Arg11 and Arg4 

may be the guanidinium-phosphate interaction. 13C-31P distance data indicated that both 

sidechains lie within hydrogen-bonding distance to lipid phosphates [13]. However, while the 

Arg4 guanidinium group interacts with the phosphate groups that have moved to the middle 

of the membrane as part of the toroidal pore, the Arg11 guanidinium ion interacts with 

phosphates at the membrane surface with much higher mobility. Thus, the motional 

restriction caused by the lipid phosphate groups is more severe for Arg4 than for Arg11. We 

note that at the temperature of 283 K where most dynamics data were obtained, the lipid 

molecules are much more mobile than at ~230 K where the 13C-31P distances were measured. 

Thus, the guanidinium-phosphate association at 283 K is likely to be transient rather than 

permanent.  

The high mobility of the β-hairpin tip of PG-1 dovetails the observation of an 

analogous β-hairpin antimicrobial peptide, TP-I [26]. There, G10 at the β-turn exhibited an 

order of magnitude shorter 1H T1ρ than the β-strand residues. Field-dependent T1ρ analysis 

indicated that the shorter T1ρ of G10 results from larger motional amplitudes of the β-turn 

and not to rate differences from the rest of the peptide [26].  

Molecular dynamics simulations of the S4 helix of the voltage-gated potassium 

channel KvAP [27] suggested that lipid headgroups and water stabilize Arg insertion by 

forming a hydrogen-bonded network. The effective lipid bilayer thickness was reduced to a 

remarkably small 10 Å near the inserted S4 helix so that water and phosphate groups can 

stabilize the Arg’s in the middle of the S4 helix by hydrogen bonds [28]. Based on the 

comparison of the mean-square displacement of phosphate groups near the peptide with those 

far away from the peptide and the analysis of the survival function of water molecules in the 

system, it was found that both phosphate groups and water molecules are much less mobile in 

the vicinity of the guanidinium groups than in their respective bulk environments. In 

particular, the mean residence times for water molecules hydrogen-bonded to Arg9 and Arg12 

in the S4 helix, which are close to the bilayer surface, are much shorter than those hydrogen-

bonded to Arg15 and Arg18, which lie in the hydrophobic core of the membrane (90-300 ps 

versus 1000-2000 ps). This different residence time suggests that the water molecules near 

Arg in the hydrophobic core are less mobile than those near Arg at the membrane surface. 
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This in turn suggests that Arg’s in the hydrophobic part of the membrane are less mobile than 

those close to the bilayer surface. These are consistent with the different mobility observed 

between Arg4 and Arg11 in PG-1.   

 In summary, we have measured the dipolar couplings, CSA’s, and T2 and T1ρ 

relaxation times of key Arg residues in PG-1 in the bacteria-mimetic anionic POPE/POPG 

membrane. The linewidths and motional scaling factors show that the β-turn Arg11 near the 

membrane surface is significantly more mobile than the β-strand Arg4 and Leu5 in the 

hydrophobic part of the membrane. The different mobility is consistent with the location of 

the residues with respect to the membrane, the intermolecular aggregation of this peptide, 

and the strong Arg-phosphate interaction. Thus, the site-specific dynamics of PG-1 correlate 

well with its topological and oligomeric structure. Solid-state NMR is shown to be a useful 

tool for elucidating the relation between membrane protein dynamics and its structure.   

 

Experimental section 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), and 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) were purchased from Avanti 

Polar Lipids (Alabaster, AL). PG-1 (NH2-RGGRLCYCRRRFCVCVGR-CONH2) was 

synthesized using Fmoc chemistry as previously described [7]. Three PG-1 samples were 

synthesized, containing U-13C, 15N-Arg4 and 15N-Leu5, U-13C, 15N-Arg11 and 15N-Phe12, U-
13C, 15N-Leu5. U-13C, 15N-labeled Arg was obtained from Spectra Stable Isotopes (Columbia, 

MD) as Fmoc-Arg(MTR)-OH.  

POPE and POPG lipids (3:1) were mixed in chloroform and blown dry under N2 gas. 

The mixture was then redissolved in cyclohexane and lyophilized. The dry lipid powder was 

dissolved in water and subjected to five cycles of freeze-thawing to form uniform vesicles. 

An appropriate amount of PG-1 to reach a peptide-lipid molar ratio (P/L) of 1 : 12.5 was 

dissolved in water and mixed with the lipid vesicle solution, incubated at 303 K overnight, 

then centrifuged at 55,000 rpm for 2.5 hours. The pellet was packed into a MAS rotor, giving 

a fully hydrated membrane sample.  

NMR experiments were carried out on a Bruker DSX-400 (9.4 Tesla) spectrometer 

(Karlsruhe, Germany). Triple-resonance magic-angle spinning (MAS) probes with a 4 mm 
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spinning module was used. Temperatures were controlled by a Kinetics Thermal Systems XR 

air-jet sample cooler (Stone Ridge, NY) on the 400 MHz system. Typical 90° pulse lengths 

were 5 – 6 μs for 13C and 15N, and 1H decoupling fields of 50-80 kHz were used. 13C 

chemical shifts were referenced externally to the α-Gly 13C’ signal at 176.49 ppm on the 

TMS scale. 15N chemical shifts were referenced externally to the N-acetyl-Val 15Nα signal at 

121.72 ppm. 
13C-1H and 15N-1H dipolar couplings were measured using the 2D DIPSHIFT 

experiment [29] at 3.0–3.5 kHz MAS with MREV-8 for 1H homonuclear decoupling. Pulse 

lengths of 3.5 μs were used in the MREV-8 pulse train. The N-H DIPSHIFT experiments 

were performed with dipolar doubling [30, 31] to increase the precision of the measured 

couplings. Some 13C sites overlap with lipid peaks, so the double-quantum-filtered (DQ) 

DIPSHIFT experiments [1] were used to measure these dipolar couplings. The DQ filter used 

SPC5 homonuclear dipolar recoupling sequence [32].  The 13C CSA was measured using the 

2D SUPER experiment [22] under 3.5 kHz MAS. The corresponding 13C field strength was 42 

kHz. 1H rotating-frame spin-lattice relaxation times (T1ρ) was measured using spin-lock field 

strengths of 50–62.5 kHz. The 13C and 15N 1D spectra were measured between 243 and 308 

K. All DIPSHIFT, SUPER and T1ρ experiments were carried out at 283 K. 

 

Acknowledgement 

This work is supported by the National Institutes of Health grant GM-066976 to M. H.  

 

References 

[1] D. Huster, L. S. Xiao, M. Hong, Biochemistry. 2001, 40, 7662-7674. 

[2] G. Reuther, K. T. Tan, A. Vogel, C. Nowak, K. Arnold, J. Kuhlmann, H. Waldmann, D. 

Huster, J. Am. Chem. Soc. 2006, 128, 13840-13846. 

[3] J. C. Williams, A. E. McDermott, Biochemistry. 1995, 34, 8309-8319. 

[4] M. Etzkorn, S. Martell, O. C. Andronesi, K. Seidel, M. Engelhard, M. Baldus, Angew. 

Chem. Int. Ed. 2007, 46, 459-462. 

[5] S. D. Cady, C. Goodman, W. F. DeGrado, M. Hong, J. Am. Chem. Soc. 2007, 129, 5719-

5729. 



www.manaraa.com

 142

[6] S. H. Park, A. A. Mrse, A. A. Nevzorov, A. A. De Angelis, S. J. Opella, J. Magn. Reson. 

2006, 178, 162-165. 

[7] S. Yamaguchi, T. Hong, A. Waring, R. I. Lehrer, M. Hong, Biochemistry. 2002, 41, 

9852-9862. 

[8] L. Bellm, R. I. Lehrer, T. Ganz, Exp. Opin. Invest. Drugs. 2000, 9, 1731-1742. 

[9] V. N. Kokryakov, S. S. Harwig, E. A. Panyutich, A. A. Shevchenko, G. M. Aleshina, O. 

V. Shamova, H. A. Korneva, R. I. Lehrer, FEBS Lett. 1993, 327, 231-236. 

[10] M. E. Mangoni, A. Aumelas, P. Charnet, C. Roumestand, L. Chiche, E. Despaux, G. 

Grassy, B. Calas, A. Chavanieu, FEBS Lett. 1996, 383, 93-98. 

[11] Y. Sokolov, T. Mirzabekov, D. W. Martin, R. I. Lehrer, B. L. Kagan, Biochim. Biophys. 

Acta. 1999, 1420, 23-29. 

[12] R. Mani, S. D. Cady, M. Tang, A. J. Waring, R. I. Lehrer, M. Hong, Proc. Natl. Acad. 

Sci. U.S.A. 2006, 103, 16242-16247. 

[13] M. Tang, A. J. Waring, M. Hong, J. Am. Chem. Soc. 2007, 129, 11438-11446. 

[14] J. Lorieau, A. E. McDermott, Magn. Reson. Chem. 2006, 44, 334-347. 

[15] J. L. Lorieau, A. E. McDermott, J. Am. Chem. Soc. 2006, 128, 11505-11512. 

[16] B. J. Wylie, W. T. Franks, D. T. Graesser, C. M. Rienstra, J. Am. Chem. Soc. 2005, 127, 

11946-11947. 

[17] R. E. Hancock, R. Lehrer, Trends Biotechnol. 1998, 16, 82-88. 

[18] E. Vives, P. Brodin, B. Lebleu, J. Biol. Chem. 1997, 272, 16010-16017. 

[19] P. Jarver, U. Langel, Biochim. Biophys. Acta. 2006, 1758, 260-263. 

[20] S. B. Long, E. B. Campbell, R. Mackinnon, Science. 2005, 309, 897-903. 

[21] M. Hong, R. G. Griffin, J. Am. Chem. Soc. 1998, 120, 7113-7114. 

[22] S. F. Liu, J. D. Mao, K. Schmidt-Rohr, J. Magn. Reson. 2002, 155, 15-28. 

[23] J. J. Buffy, A. J. Waring, R. I. Lehrer, M. Hong, Biochemistry. 2003, 42, 13725-13734. 

[24] R. Mani, M. Tang, X. Wu, J. J. Buffy, A. J. Waring, M. A. Sherman, M. Hong, 

Biochemistry. 2006, 45, 8341-8349. 

[25] J. Chen, T. J. Falla, H. J. Liu, M. A. Hurst, C. A. Fujii, D. A. Mosca, J. R. Embree, D. J. 

Loury, P. A. Radel, C. C. Chang, L. Gu, J. C. Fiddes, Biopolymers. 2000, 55, 88-98. 

[26] T. Doherty, A. J. Waring, M. Hong, Biochemistry. 2008, 47, 1105-1116. 



www.manaraa.com

 143

[27] T. Hessa, S. H. White, G. von Heijne, Science. 2005, 307, 1427. 

[28] J. A. Freites, D. J. Tobias, G. von Heijne, S. H. White, Proc. Natl. Acad. Sci. U. S. A. 

2005, 102, 15059-15064. 

[29] M. G. Munowitz, R. G. Griffin, G. Bodenhausen, T. H. Huang, J. Am. Chem. Soc. 1981, 

103, 2529-2533. 

[30] M. Hong, J. D. Gross, C. M. Rienstra, R. G. Griffin, K. K. Kumashiro, K. Schmidt-Rohr, 

J. Magn. Reson. 1997, 129, 85-92. 

[31] D. Huster, S. Yamaguchi, M. Hong, J. Am. Chem. Soc. 2000, 122, 11320-11327. 

[32] M. Hohwy, C. M. Rienstra, C. P. Jaroniec, R. G. Griffin, J. Chem. Phys. 1999, 110, 

7983-7992. 

 

 



www.manaraa.com

 144

 

Chapter 8 

Effects of Guanidinium-Phosphate Hydrogen Bonding on the Membrane-

Bound Structure and Activity of an Arginine-Rich Membrane Peptide 

from Solid-State NMR 
Published in Angew. Chem. Int. Ed. 

2008, 47, 3202-3205 

Ming Tang, Alan J. Waring, Robert I. Lehrer, and Mei Hong* 

(*)  M. Tang, Dr. M. Hong  

Department of Chemistry 

Iowa State University 

Ames, IA 50011 (USA) 

Fax: (+1) 515-294-0105 

E-mail: mhong@iastate.edu 

Homepage: http://www.public.iastate.edu/~hongweb 

 

Dr. A. J. Waring, Dr. R. I. Lehrer 

Department of Medicine 

University of California at Los Angeles 

Los Angeles, CA 90095 (USA) 

 

Ming Tang, Alan J. Waring, Robert I. Lehrer, and Mei Hong:  Effects of Guanidinium-

Phosphate Hydrogen Bonding on the Membrane-Bound Structure and Activity of an 

Arginine-Rich Membrane Peptide from Solid-State NMR. Angewandte Chemie International 

Edition. 2008. 47. 3202-3205. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 

Reproduced with permission. 

This chapter is modified from the manuscript in its pre-publication form, but not the article in 

its final version. 

mailto:mhong@iastate.edu
http://www.public.iastate.edu/~hongweb


www.manaraa.com

 145

Keywords 

Membrane proteins, solid-state NMR, guanidinium-phosphate complex, Arg-rich proteins, 

structure determination, antimicrobial peptides.  

 

Arginine- (Arg) and lysine-rich cationic peptides and protein domains are found in a 

wide range of membrane-active proteins such as antimicrobial peptides,[1] cell-penetrating 

peptides,[2] and voltage-sensing domains of potassium channels.[3] Yet what three-

dimensional structures these proteins adopt to enable translocation of the charged residues 

into the low dielectric milieu of the hydrophobic part of the lipid membrane against the free-

energy barrier[4] remain poorly understood. An increasing number of molecular dynamics 

simulations and experimental studies has suggested the importance of Arg interaction with 

lipids in membrane protein function.[5, 6] Magic-angle spinning (MAS) solid-state NMR 

(SSNMR) spectroscopy can provide direct experimental insights into this intriguing energetic 

and structural question.  

 We have recently reported SSNMR distance-constrained guanidinium-phosphate 

(Gdn- PO4
− ) complex formation between the Arg’s of a β-hairpin antimicrobial peptide, PG-1, 

and the lipid phosphates.[7] The existence of these complexes suggests that the Arg’s are 

neutralized by the phosphates to enable transmembrane insertion of the peptide. We 

hypothesized that the peptide-associated phosphate headgroups transferred to the 

hydrophobic part of the membrane are responsible for the toroidal pore defects.[8] Such Gdn-

PO4
−  complexes should be stabilized by   N − H"O = P  hydrogen bonds and electrostatic 

attraction.[9]  

 Here we test the importance of Gdn- PO4
−  hydrogen bonding to the structure and 

activity of PG-1 by dimethylating each guanidinium, thus reducing the number of N-H 

hydrogen bond donors (Figure 8.1).[10] We show that this Arg dimethylation significantly 

alters the membrane insertion and activity of PG-1. Figure 8.2 shows oriented 31P spectra of 

POPC/POPG membranes containing 0-4% of the mutant, Argmm-PG-1. Without the peptide, 

membranes uniaxially aligned on glass plates exhibit the expected single peak at ~30 ppm 

without other intensities in the anisotropic chemical shift range. With increasing Argmm-PG-1, 

residual powder intensities indicative of misalignment and a small 0-ppm isotropic peak 
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indicative of toroidal pores are created. Lineshape simulations indicate that the isotropic 

component in the 4% Argmm-PG-1 sample is 20% of the total intensity, much less than the 

39% caused by PG-1. Thus Arg dimethylation reduces membrane disruption.  

 

 
Figure 8.1. a) Structure of dimethylated Arg and its bidentate complex with phosphate ions. b) Argmm-PG-1 

amino acid sequence.  
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Figure 8.2. Oriented 31P spectra of POPC/POPG membranes with 0-4% a) Argmm-PG-1 and b) PG-1. The 4% 

samples spectra are simulated with an aligned peak, an isotropic peak, and a powder pattern, to yield the 

fraction of the isotropic peak.  

 

 Corroborating the 31P NMR data are the minimal effective concentrations (MECs) of 

Argmm-PG-1 and PG-1 against a number of bacteria. In a physiological amount of salt, the 

average MEC of Argmm-PG-1 is 3.4-fold higher than PG-1, indicating that the mutant is 3.4-

fold less potent (Table S8.1). At low salt, Argmm-PG-1 is still 1.4-fold less potent. The 

weaker activity supports the lower membrane disorder of Argmm-PG-1 in the 31P spectra. The 

different salt-concentration dependence of the two peptides suggests different mechanisms 

are involved in their antimicrobial action (Supporting Information). 

 To determine the topological structure of Argmm-PG-1 in the lipid membrane, we 

measured peptide-lipid 13C-31P distances. Figure 8.3 shows REDOR distance curves of 

several 13C-labeled sites. L5 Cα, next to the most hydrophobic Arg, R4, increased its 

distance from 6.9±1.6 Å in PG-1 to 8.5 Å in Argmm-PG-1, suggesting that R4 mutation 

weakened the Gdn- PO4
−  complex. All measured distances are within 5.7 – 8.5 Å. Since the 

membrane has much less isotropic defects in the presence of Argmm-PG-1, the distance 

similarity suggests that Argmm-PG-1 binds at the membrane-water interface, with the strand 

axis roughly parallel to the membrane plane.  

 

 
Figure 8.3. 13C-31P distances of Argmm-PG-1 in hydrated POPE/POPG membranes. a) L5α (squares) in Argmm-

PG-1, compared with PG-1 (circles). Lipid CH2 data (diamonds) give the long distance limit. b) G3α (squares) 

and V14α (diamonds) in Argmm-PG-1, and V16C’ in Argmm-PG-1 (filled circles) and in PG-1 (open circles).  
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 To verify the interfacial hypothesis, we measured the distance between Argmm-PG-1 

and the lipid chains using a 2D 31P-detected 1H spin diffusion experiment.[11] In a peptide-

free membrane, the lipid chain (CH2)n cross peak with 31P is very weak due to the long 

distance and high mobility of the lipids. A rigid transmembrane (TM) peptide facilitates spin 

diffusion via its strongly coupled 1H network, giving high CH2-P intensity. In contrast, a 

surface-bound peptide or a TM peptide with large-amplitude motion are ineffective spin-

diffusion conduits, thus giving low CH2-P intensities.  

 Figure 8.4a shows the 2D spectrum of Argmm-PG-1 in POPE/POPG membrane at a 

mixing time of 64 ms. In the 1D cross sections, the Argmm-PG-1 CH2 intensity is higher than 

the pure membrane and lower than PG-1 (b-d). The CH2 buildup curves (e) confirm that PG-

1 has the fastest rise, as expected for the TM peptide; Argmm-PG-1 has slower buildup, while 

the peptide-free bilayer has the slowest rise. These support the interfacial binding of Argmm-

PG-1.  

 
Figure 8.4. 31P-detected 1H spin diffusion spectra of POPE/POPG membranes at 303 K. a) 64 ms 2D spectrum 

of Argmm-PG-1-containing membrane. b-d) 64 ms 1D cross sections of membranes containing b) Argmm-PG-1, c) 

no peptide, and d) PG-1. e) CH2 buildup curves for the three samples.  

 

 To assess if Argmm-PG-1 is TM but highly mobile, which could still satisfy the 1H 

spin diffusion data, we measured C-H dipolar couplings of two Cα sites. Both L5 and V14 

give Cα-Hα couplings that are 60-70% of the rigid-limit value in the POPC/POPG 
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membrane (Table 8.1), shown in 2D LG-CP[12] spectra (Figures S8.1), indicating that the 

peptide is mobile. This contrasts with the fully immobilized PG-1 backbone in anionic 

membranes.[13, 14] L5 and V14 are next to the disulfide bonds, thus backbone segmental 

motion is unlikely, and the reduced couplings are most likely due to rigid-body rotation of 

Argmm-PG-1 around the bilayer normal,   
G
n . Indeed, recoupled Cα chemical shift anisotropies 

(CSA) of L5 and V14 show uniaxial lineshapes (Figures S8.2), confirming the uniaxiality of 

the backbone motion. Under this rotation, SCH depends on the C-H bond orientation with   
G
n  

as SCH= 3cos2 θ −1( ) 2 , so the L5 and V14 SCH’s must be related by the orientations of the 

two bonds to each other and to   
G
n , and the SCH should indicate the peptide orientation.[15, 16]  

 

Table 8.1. Cα SCH of Argmm-PG-1 in two anionic lipid membranes.  

SCH POPC/POPG POPE/POPG 

L5 0.69 0.84 

V14 0.62 0.37 

 

 Figures 8.5, S3 and S4 show calculated SCH’s for strand residues in an ideal 

antiparallel β-hairpin as a function of (τ, ρ) angles [17]: τ is the tilt angle between the strand 

axis and   
G
n , and ρ is the rotation angle of the β-hairpin plane from   

G
n . ρ = 0˚ when   

G
n  lies in 

the β-sheet plane. For the TM case ˚180≈τ , SCH is generally less than 0.5 due to the near 

perpendicularity of the Cα-Hα bonds to   
G
n . For τ of 130˚–180˚, the measured SCH > 0.6 for 

L5 and V14 in the POPC/POPG membrane cannot be both satisfied. As the strands become 

more parallel to the bilayer plane ( ˚90→τ ), SCH adopts larger values and varies over the 

entire range of 0–1. The best fit is (τ, ρ) = (116˚, 179˚), indicating that the strand axis is 

roughly orthogonal to   
G
n  and the hairpin plane is parallel to   

G
n . The latter is reasonable as the 

peptide meets the least resistance at this orientation when inserting into the membrane. Three 

other symmetry-related (τ, ρ) solutions exist, but they agree less well with the 13C-31P 

distance data (Table S8.2).  

 If residual segmental motion had remained at L5 and V14 Cα, it would mean the 

whole-body SCH is larger than 0.6-0.7, which would require τ to be even closer to 90˚. Thus, 

the strand axis must be parallel to the membrane plane. In the POPE/POPG membrane, the 
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L5 and V14 SCH’s change to 0.84 and 0.37 (Table 1). But due to the high angular resolution 

of SCH in this regime (Figures S8.5), the difference translates to only small (τ, ρ) changes, 

with the best fit at (113˚, 164˚). Thus, Argmm-PG-1 is interfacial in both anionic membranes. 

We also considered the effect of the backbone structure on the orientation calculation. 

Figures S8.6 and Table S8.2 show that even with the non-ideal PG-1 solution structure, the 

C-H dipolar couplings still constrain the strand axis to be perpendicular to   
G
n .  

 

 
Figure 8.5. a) Definition of (τ, ρ) angles. τ is the angle between the strand axis z and the bilayer normal   

G
n , and 

ρ is the angle between the C=O bond of residue 6 and the common plane of z and   
G
n . b) Calculated SCα-Hα of the 

strand residues (4-8 and 13-17) in an ideal β-hairpin as a function of (τ, ρ). The measured SCα-Hα of L5 and V14 

are drawn as solid and dashed lines, respectively. The best-fit (τ, ρ) panel, near (120˚, 180˚), is shaded.  

 

 Figure 8.6 summarizes the dramatic topology difference of Argmm-PG-1 and PG-1 in 

the lipid membrane. The hydrogen-bond-deficient mutant is no longer TM but is inserted to 

the membrane-water interface, 5.7-8.5 Å from the 31P plane and further from the hydrophobic 

center of the membrane than PG-1. The mutant is uniaxially mobile and thus not 

oligomerized, while PG-1 forms immobile multimeric β-barrels in the anionic membrane, 

possibly promoted by high salt concentration. Thus, hydrogen-bond deficiency caused by 
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Arg-dimethylation in this antimicrobial peptide weakens Gdn- PO4
−  complexation, prevents 

peptide insertion and oligomerization, and reduces the membrane disruptive activity. The 

data here suggest that the remaining activity of Argmm-PG-1 is achieved by a different 

mechanism, most likely in-plane diffusion, which still gives rise to isotropic lipid 

morphologies but at a lower amount than the toroidal pore mechanism employed by wild-

type PG-1 [18]. Gdn- PO4
−  hydrogen bonding may also affect the structure and function of 

other Arg-rich membrane proteins, as suggested by recent molecular dynamics simulations of 

a potassium channel and a cell-penetrating peptide.[3, 5, 6] 
 

 
Figure 8.6. Topological structure of a) Argmm-PG-1 and b) PG-1 in anionic lipid membranes.  
 

Experimental section 

 Argmm-PG-1 is synthesized by Fmoc chemistry and purified to >95%. The peptides 

were reconstituted into lipid vesicles at P/L (mole) = 1:15. All NMR data were obtained at 

9.4 Tesla using a triple-resonance 4 mm MAS probe and a static probe. 13C-31P REDOR 

experiments were conducted at 225 K under 4.5 kHz MAS. 2D LG-CP and DIPSHIFT 

experiments were used to measure C-H dipolar couplings and the ROCSA experiment was 

used to measure the 13C CSA. Further details of orientation simulations are given in the 

supporting information.  
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Antimicrobial assays 

 Radial diffusion assays were performed in media supplemented with 100 mM NaCl 

or in low salt media. Both assay media contained 10 mM sodium phosphate buffer, 1% 

agarose, and 0.3 mg/ml of trypticase soy broth powder to allow the organisms to grow until 

the underlay assay gel was covered with a nutrient-rich overlay gel that allowed surviving 

microbes to form colonies. The high-salt results are more predictive of activity in 

physiological fluids.  

Table S8.1. Minimum effective concentrations (MEC) of PG-1 and Argmm-PG-1 against various bacteria at 

high and low salt conditions.  

100 mM NaCl Low NaCl 
MEC (μg/ml) PG-1 Argmm-PG-1 PG-1 Argmm-PG-1 

Gram-negative bacteria   

E. coli 1.09 3.00 1.55 1.58 

P. aeruginosa 1.39 3.41 1.90 1.62 

K. pneumoniae 1.93 8.76 4.47 7.9 

Gram-positive bacteria   

S. epidermidis 1.07 1.90 4.19 4.29 

E. faecalis 1.54 3.10 4.10 3.17 

B. subtilis 1.22 3.91 1.79 3.58 

S. aureus 1.66 10.4 5.10 9.35 

mean (n=7) 1.41 4.92 3.30 4.50 
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 The mean activities of PG-1 and Argmm-PG-1 in 100 mM NaCl differ significantly 

(p<0.001 by the Mann-Whitney Rank Sum test).  

Table 8.1 shows that higher salt concentration increases the activity of PG-1, but does 

not affect the activity of Argmm-PG-1. We hypothesize that higher salt concentration 

promotes PG-1 aggregation, which is essential for its toroidal-pore mechanism of action [2]. 

In our previous study of the structure of PG-1 fibrils outside the lipid membrane,[1] high salt 

concentration was used to promote fibril formation. The fact that salt level does not affect the 

activity of Argmm-PG-1 suggests that the mutant adopts a different mechanism of action that 

does not require peptide aggregation. This is consistent with the large-amplitude dynamics 

observed for the mutant.  

 

Motionally averaged dipolar couplings and chemical shift anisotropies  

 C-H dipolar couplings of Argmm-PG-1 were measured using the 2D LG-CP 

experiment [3] for the POPC/POPG sample and the DIPSHIFT experiment [4] for the 

POPE/POPG sample. The LG-CP experiment was conducted under 10 kHz spinning at 295 

K. The DIPSHIFT experiment was performed under 3.5 kHz MAS at 303 K, the higher 

temperature due to the higher phase transition temperature of the POPE/POPG membrane. 

The MREV-8 sequence was used for 1H homonuclear decoupling. The scaling factors for the 

LG-CP sequence and the MREV-8 sequence are 0.57 and 0.47, respectively.  

 
Fig. S8.1. 13C-1H LG-CP cross sections of Argmm-PG-1 in the POPC/POPG membrane at 295 K. (a) L5 Cα. (b) 

V14 Cα. Dashed line in (a) indicates the rigid-limit coupling of 12.5 kHz, measured at 233 K. The experimental 

uncertainty is ±0.2 kHz.  
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 In addition to C-H dipolar couplings, we measured the Cα chemical shift anisotropy 

(CSA) of L5 and V14 using the ROCSA experiment [5] to assess if the backbone motion is 

uniaxial. The experiment was carried out at 303 K on the POPE/POPG membrane samples 

under 6 kHz MAS. Fig. S8.2 shows the ROCSA spectra and the relevant peptide and lipid 

cross sections. The lipid cross sections (Fig. S8.2c) give a control of the expected uniaxial 

lineshapes due to the known uniaxial rotation of lipids around the bilayer normal. It can be 

seen that the peptide L5 and V14 Cα sites also have uniaxial lineshapes (Fig. S8.2b), with 

motionally narrowed anisotropy parameter δ  of 17 ppm for L5 and 11 ppm for V14. The 

rigid-limit anisotropy parameter δ for β-sheet Val is known from previous experimental 

studies to be 25 ppm [6], while the rigid-limit δ for the β-sheet conformation of Leu has been 

obtained from ab initio calculations to be 19.5 ppm [7]. Thus, the CSA order parameter 

SCSA = δ δ  is 0.89 for L5 and 0.44 for V14. These values are consistent with the C-H order 

parameters measured for these two sites in the POPE/POPG membrane. Most importantly, 

the uniaxial CSA lineshapes confirm the presence of uniaxial rotation of the Argmm-PG-1 

backbone around the membrane normal.  

 

 
Fig. S8.2. 13Cα CSA of Argmm-PG-1. (a) 2D ROCSA spectra of Argmm-PG-1 in POPE/POPG membranes at 303 

K. (b) 1D cross sections of the peptide L5 and V14 Cα sites.  (c) 1D cross sections of two lipid peaks, glycerol 

G2 and acyl chain (CH2)n. The lipid lineshapes are uniaxial as expected. The peptide lineshapes are similarly 

uniaxial, indicating uniaxial rotation around the membrane normal.   
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Orientation calculations  

The ideal antiparallel β-hairpin structure was constructed using (φ, ψ) torsion angles 

of (-137˚, +135˚) for the strand residues, and (-45˚, +85˚) and (+155˚, -20˚) for the i+1 and 

i+2 residues of the β-turn [8]. The turn torsion angles were modified from the classical β-turn 

conformations to make the two strands approximately parallel. The strand axis was chosen to 

be the average orientation of six consecutive C’-N bonds from residue 4 to residue 9. The tilt 

angle τ is the angle between this strand axis and the bilayer normal. The ρ angle was defined 

as the angle between the C=O bond of residue 6 and the common plane of the strand axis and 

the bilayer normal. The peptide was rotated through all combinations of (τ, ρ) angles and the 

C-H dipolar couplings of the N-strand residues 4 - 8 and C-strand residues 13 - 17 were 

calculated and converted to the order parameter according to SCH = ω τ,ρ( ) ωrigid .  

 Fig. S8.3 shows a more extended set of SCH values for (τ, ρ) angles in the range (10-

90˚, 0˚-180˚), which complements the simulations in Fig. 5. The best fit (τ, ρ) in this range 

for the POPC/POPG bound Argmm-PG-1 is (64˚, 359˚), and is related to the global best fit 

(116˚, 179˚) by symmetry.  
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Fig. S8.3. SCH of an ideal β-hairpin as a function of (τ, ρ). The N- and C-strand SCH’s are plotted as blue and red 

squares, respectively, with the L5 and V14 values in black. The experimental SCH’s for L5 and V14 in the 

POPC/POPG membrane are drawn as blue and red dashed lines. The yellow highlighted panel indicates the 

approximate position of one of the four best-fit orientations.  

 

 Fig. S8.4 shows the RMSD between the calculated SCH and the experimental SCH’s of 

L5 and V14 in the POPC/POPG membrane. The RMSD is calculated as  

 

RMSD = SCH,calc
L5 −SCH,exp t

L5( )2 + SCH,calc
V14 −SCH,exp t

V14( )2 . 

 

From the RMSD, four symmetry-related best-fit orientations are identified and listed in Table 

S8.2. Taking into account the 13C-31P distance constraints, the global best-fit (τ, ρ) angles are 

orientation A, (116˚, 179˚).  
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Fig. S8.4. RMSD between the calculated and experimental Cα-Hα order parameters of Argmm-PG-1 in the 

POPC/POPG membrane as a function of (τ, ρ). The four lowest RMSD positions are related by symmetry and 

are indicated as A, B, C, D.   

 

To obtain the peptide orientation in the POPE/POPG membrane, we carried out the 

same SCH calculation but compared these with the POPE/POPG experimental data. Fig. S8.5a 

shows SCH for (τ, ρ) of (50-130˚, 160˚-340˚). The ideal β-hairpin structure is used in the 

calculation. Again, four symmetry-related best-fit orientations are found according to the 

RMSD analysis (Fig. S8.5b). The orientation (τ, ρ) = (113˚, 164˚) is chosen as the global best 

fit because it agrees best with the 13C-31P distance data. This orientation is quite similar to 

that found in POPC/POPG membranes, as shown by the schematic representation in Fig. 

S8.5c, indicating that the composition change from POPC to POPE lipids does not affect the 

Argmm-PG-1 orientation significantly.  
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Fig. S8.5. Orientation of Argmm-PG-1 in the POPE/POPG membrane. (a) SCH of an ideal β-hairpin for various 

(τ, ρ) angles. The N- and C-strand SCH’s are plotted as blue and red squares, respectively, with L5 and V14 

values in black. The experimental Cα SCH’s for L5 and V14 in the POPE/POPG membrane are drawn as blue 

and red dashed lines, respectively. Some of the approximate best-fit orientations are highlighted in yellow to 

indicate the agreement with the experimental data. (b) RMSD between the calculated and experimental Cα-Hα 

order parameters of Argmm-PG-1 in the POPE/POPG membrane as a function of (τ, ρ). (c) Topological structure 

of Argmm-PG-1 in the POPE/POPG membrane. 

 

To assess if the structure used in the SCH calculation affects the orientation result 

significantly, we also calculated SCH using the solution NMR structure of PG-1 (PDB: 1PG1) 
[9]. In the 20 energy-minimized structures, the backbone conformations of the β-strand 

residues 5-9 and 12-17 have relatively small variations. We chose the representative structure 

#10 as the input for the orientation calculation. Fig. S8.6 shows that the best-fit τ angles fall 

in the same range as the ideal hairpin simulations, close to 90˚, thus the conclusion that the 

strand axis is roughly parallel to the membrane plane is unchanged. However, for the 

POPC/POPG membrane, even the best-fit (τ, ρ) angles of (100˚, 152˚) does not agree with 

the experimental data very well (Fig. S8.6a), suggesting that the solution structure of PG-1 

may deviate non-negligibly from the membrane-bound peptide structure. Nevertheless, the 

best-fit (τ, ρ) range of (60˚-90˚, 150˚-180˚) is in general good agreement with the ideal 

hairpin simulations (Table S8.2). In conclusion, Argmm-PG-1 has the strand axis 

perpendicular to the membrane normal and has the hairpin plane roughly parallel to the 

membrane normal, regardless of the input structure.  
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Fig. S8.6. Calculated SCH’s using the PG-1 solution structure #10. Values of residues 5-9 and 12-17 are shown 

in blue and red squares, respectively, with the L5 and V14 SCH’s in black. The experimental SCH’s for L5 and 

V14 are drawn as blue and red dashed lines, respectively. (a) Experimental data is that of the POPC/POPG 

membrane. (b) Experimental data is that of the POPE/POPG membrane. The approximate best-fit orientations 

are highlighted in yellow to indicate the agreement with the experimental data.  

 

The somewhat different quality of fit between the PG-1 solution NMR structure and 

the ideal β-hairpin structure can be explained by the distorted backbone conformation of the 

PG-1 solution structure, shown in Fig. S8.7. The Cα-Hα vectors are along the same direction 

in the ideal β-hairpin, but point to a range of directions in the solution NMR structure #10.  

 

 
Fig. S8.7. Comparison of the structures of (a) the ideal β-hairpin and (b) PG-1 solution NMR structure #10 

(PDB: 1PG1). Cα and Hα atoms are highlighted in red and black, respectively. The β-strand axis is 

perpendicular to the view plane. Residues 5-9 and 12-17 are shown in sticks.  
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 Table S8.2 summarizes the best-fit orientations of Argmm-PG-1 in POPC/POPG and 

POPE/POPG membranes from simulations using the ideal β-hairpin structure and the 

solution NMR structure #10. The global best-fit angles in each case after taking into account 

the 13C-31P distance constraints is listed in column A. All global best-fit orientations fall into 

a relatively narrow range of (τ, ρ) = (85-120˚, 130-180˚), indicating that Argmm-PG-1 strand 

axis is perpendicular to the bilayer normal. This is distinctively different from the 

transmembrane orientation of PG-1 [2].  

 
Table S8.2. Best-fit (τ, ρ) angles for Argmm-PG-1 in POPC/POPG and POPE/POPG membranes. Solution A is 

the global best-fit based on agreement with the 13C-31P distance constraints. 

Structure Membrane A B C D Error 

Ideal hairpin POPC/POPG (116˚, 179˚) (64˚, 359˚) (72˚, 179˚) (108˚, 359˚) ± 3˚ 

Ideal hairpin POPE/POPG (113˚, 164˚) (67˚, 344˚) (76˚, 164˚) (104˚, 344˚) ± 3˚ 

PG-1 #10 POPC/POPG (100˚, 152˚) (80˚, 332˚) (46˚, 153˚) (134˚, 333˚) — 

PG-1 #10 POPE/POPG (89˚, 137˚) (91˚, 317˚) (60˚, 133˚) (120˚, 313˚) ± 6˚ 

 
1H spin diffusion 

 2D 31P-detected 1H spin-diffusion experiments were conducted at 303 K under 5 kHz 

MAS. After 1H evolution, a mixing time (tm) of 64 – 400 ms was applied to transfer 1H 

polarization from the mobile lipids and water to the final destination of lipid headgroup 31P 

for detection. In the absence of transmembrane proteins, the lipid chain CH2 to 31P cross peak 

is very slow to develop due to the extremely weak dipolar coupling. The presence of 

transmembrane peptides significantly facilitates the spin diffusion via the pathway CH2 –> 

peptide –> 31P. To ensure that only the mobile lipid and water polarization served as the 

source of spin diffusion, we suppressed the rigid peptide polarization by a 1H T2 relaxation 

filter of 0.8 ms before 1H chemical-shift evolution and spin diffusion. 

 
13C-31P distance measurement 

 13C-31P distances were measured using the rotational-echo double resonance (REDOR) 

experiment. Composite 90°180°90° pulses were applied on the 31P channel to reduce the 
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effect of flip angle errors and enhance the distance accuracy. At each REDOR mixing time 

(tm), a control experiment (S0) with the 31P pulses off and a dephasing experiment (S) with 

the 31P pulses on were carried out. The normalized dephasing, S/S0, as a function of tm gives 

the 13C-31P dipolar coupling. The 13CO dephasing was corrected for the lipid natural-

abundance CO contribution. The experiments were conducted under 4.5 kHz MAS at 225 K. 
31P 180˚ pulse lengths of 9 μs were used to achieve complete inversion of the broad 31P 

resonance.  
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Appendix A 
 
Input code for multispin simulation using SIMPSON:  
 
 
spinsys {     
  channels 13C 31P     
  nuclei   13C 31P 31P 31P 31P    
  dipole   1 2 -12.24 0 45 0       
  
  dipole   1 3 -12.24 0 45 90 
  
  dipole   1 4 -12.24 0 45 180 
  dipole   1 5 -12.24 0 45 270 
}     
 
par {     
  proton_frequency 400e6  
  spin_rate        1000     
  sw               spin_rate/2.0    
  np               13 
  crystal_file     rep168 
  gamma_angles     18 
  start_operator   I1x     
  detect_operator  I1p     
  verbose          1101 
  variable rf      150000     
  use_cluster      0 
}     
 
proc pulseq {} {   
  global par   
  
  maxdt 1.0  
  
  set t180 [expr 0.5e6/$par(rf)]    
  set tr2 [expr 
0.5e6/$par(spin_rate)]   
   
  reset   
  delay $tr2   

  pulseid $t180 0 x $par(rf) x   
  delay $tr2   
  pulseid $t180 0 x $par(rf) y   
  store 1   
 
  reset   
  acq   
  delay $tr2  
  pulseid $t180 0 x $par(rf) x   
  delay $tr2   
  pulseid $t180 $par(rf) x 0 x   
  prop 1   
  store 2   
  acq   
 
  for {set i 2} {$i < $par(np)} 
{incr i} {   
    reset   
    prop 1   
    prop 2   
    prop 1   
    store 2   
    acq   
  }   
} 
 
proc main {} {     
  global par      
   
  set f [fsimpson]     
  fsave $f $par(name).fid -xreim  
#  fzerofill $f 8192  
#  faddlb $f 100 0 
#  fft  $f 
#  fsave $f $par(name).spe -binary     
}  
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Appendix B 
 
Input codes for DIPSHIFT simulation: 
 
For X-H tensors: 
 
120 180 60    mintorsion, maxtorsion,ktorsionstep 
60      nalpha 
60                       nbeta 
60            ngamma 
15           ntd 
3.5          omigar (NOT angular frequency) 
1          idipcsyn -- both(2)/cs(1)/dip(0) 
0                             idqyn -- dq factor yes(1)/no(0) 
-w/2 –w/2 w    N csa principal values 
5.8                    C-H dipolar coupling, 1-bond 
0.  60.  0.    alpha,beta,gamma of N-C in NH CSA system 
0.  109.5  0.   alpha and beta of N-C in C-H  system 
0.      T2 widening width kHz 
 
 
For X-H2 tensors: 
 
120 180 60    mintorsion, maxtorsion,ktorsionstep 
60      nalpha 
60                       nbeta 
60            ngamma 
15           ntd 
3.5          omigar (NOT angular frequency) 
1          idipcsyn -- both(2)/cs(1)/dip(0) 
0                             idqyn -- dq factor yes(1)/no(0) 
-w 0 w    N csa principal values 
5.8                    C-H dipolar coupling, 1-bond 
0.  60.  0.    alpha,beta,gamma of N-C in NH CSA system 
0.  109.5  0.   alpha and beta of N-C in C-H  system 
0.      T2 widening width kHz 
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Appendix C 
 
Input code for HNCH simulation: 
 
120 180 60         mintorsion, maxtorsion,ktorsionstep 
60      nalpha 
60                    nbeta 
60            ngamma 
15           ntd 
4.444          omigar (NOT angular frequency) 
2          idipcsyn -- both(2)/cs(1)/dip(0) 
1                             idqyn -- dq factor yes(1)/no(0) 
-2.614 -2.614 5.228      N csa principal values 
10.92               C-H dipolar coupling, 1-bond 
0.  60.  0.    alpha,beta,gamma of N-C in NH CSA system 
0.  109.5  0.   alpha and beta of N-C in C-H  system 
0.     T2 widening width kHz 
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Appendix D 
 
Program code for SLF simulation using Fortran: 
 
c    program calc Pisa wheel pattern 
 
        parameter       (nmaxx=256,nmaxy=256) 
        real    redat(0:nmaxx,0:nmaxy),b0(3),aleng(100) 
 real  
reNH(0:nmaxx,0:nmaxy),reCSA(0:nmaxx,0:nmaxy) 
 real  rePISA(0:nmaxx,0:nmaxy) 
 real  vNH(100,3),uNH(100,3),uCO(100,3), 
betax(3),ubetax(3) 
 real  
vCN(100,3),uCN(100,3),aCNleng(100),uNH2(100,3) 
 real  vNC(100,3),uNC(100,3),aNCleng(100) 
 real testbetax(3),omegNH(100),omegCSA(100) 
 real 
uniNH(3),uniNC(3),vs11(3),vs22(3),vs33(3) 
 real uniCO(3),testCO2(3), 
vCO(100,3),uniCO1(3),uniCO2(3) 
 real v1s11(3),v2s11(3),v1s22(3),v2s22(3) 
 real uniNH1(3),uniNH2(3),aCOleng(100) 
 real v1s33(3),v2s33(3),vs22intopl(3) 
 real cols11(100,3),cols22(100,3),cols33(100,3) 
 real 
col2s11(100,3),col2s22(100,3),col2s33(100,3) 
 integer num(100) 
 real beB0betax,gammabetax 
 integer int1, outnumt, tcount, inr,outnumr, 
rcount,t,r,b,p 
 character*32 outfile,outb,outp 
        common redat,nx,ny,outfile 
 real testperp(3), testperp2(3) 
  
c........................Input............................ 
 
         write(6,*)'Calculation of 2 series of 1D spectra' 
         write(6,*)'(1) CO CSA spectra' 
  write(6,*)'(2) N csa spectra' 
  write(6,*)'from given N-H, C=O, and CO-N 
vectors' 
  write(6,*)'and the resulting 2D spectrum' 
 
 write(6,*)'delta NH coupling (kHz, ca. 10) -->' 
 write(6,*)'10' 
 delta=10.0 
 
 write(6,*)'Width of NH range (kHz, ca. 20.2) -
->' 
 write(6,*)'20.2' 
 swNH=20.2 
c read(5,*)swNH 
  
 write(6,*)'15N CSA:' 

        write(6,*)'s11= 64, s22= 77, s33= 217 (order 
matters!)' 
 s11=64 
 s22=77 
 s33=217 
c write(6,*)'chem. shift s11,s22,s33 -->' 
c        read(5,*) s11,s22,s33 
 
        write(6,*)'ppm range of w2 axis (e.g. 300, 0) -->' 
 ppmmin=300 
 ppmmax=0 
c        read(5,*)ppmmin,ppmmax 
 
        write(6,*)'# of frequency points (e.g. 100) -->' 
        read(5,*)nx 
 nxd2=nx/2 
 wNHscal=(nx-1)/swNH 
 wCSAscal=(nx-1)/(ppmmax-ppmmin) 
  
 
 ny0=18   !number of NH 
bonds 
 ny=ny0 
  
c.................................................... 
c..............RTD structure 15........... 
c.................................................... 
 
c Add molecular coordinates here! 
 
c Definition Ni-Hi=vNH(i,#) 
 
c  Definition Ci-1Ni=vCN(i, #) 
 
c Definition CiOi=vCO(i, #) 
 
c Definition NiCi=vNC(i, #) 
 
c---------------------------------------------------- 
c calculate unit vectors 
c---------------------------------------------------- 
 
 write(6,*)'lengths of N-H vectors:' 
 do j=1,ny 
  
   aleng(j)=0. 
   do i=1,3 
     aleng(j)=aleng(j)+vNH(j,i)*vNH(j,i) 
   enddo 
   aleng(j)=sqrt(aleng(j)) 
 write(6,*)j,aleng(j) 
   do i=1,3 
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    uNH(j,i)=vNH(j,i)/aleng(j) 
   enddo 
 enddo !j residue number 
 
 
 write(6,*)'lengths of CO-N vectors:' 
 do j=1,ny 
   aCNleng(j)=0. 
   do i=1,3 
     aCNleng(j)=aCNleng(j)+vCN(j,i)*vCN(j,i) 
   enddo 
   aCNleng(j)=sqrt(aCNleng(j)) 
 write(6,*)j,aCNleng(j) 
   do i=1,3 
    uCN(j,i)=vCN(j,i)/aCNleng(j) 
   enddo 
 enddo    !j residue 
number 
    
 write(6,*)'lengths of C=O vectors:' 
 do j=1,ny 
   aCOleng(j)=0. 
   do i=1,3 
     aCOleng(j)=aCOleng(j)+vCO(j,i)*vCO(j,i) 
   enddo 
   aCOleng(j)=sqrt(aCOleng(j)) 
 write(6,*)j,aCOleng(j) 
   do i=1,3 
    uCO(j,i)=vCO(j,i)/aCOleng(j) 
   enddo 
 enddo    !j residue 
number 
    
 write(6,*)'lengths of N-Ca vectors:' 
 do j=1,ny 
   aNCleng(j)=0. 
   do i=1,3 
     aNCleng(j)=aNCleng(j)+vNC(j,i)*vNC(j,i) 
   enddo 
   aNCleng(j)=sqrt(aNCleng(j)) 
 write(6,*)j,aNCleng(j) 
   do i=1,3 
    uNC(j,i)=vNC(j,i)/aNCleng(j) 
   enddo 
 enddo !j residue number 
 
c---------------------------------------------------- 
c determine principal axes of 15N CSAs 
c---------------------------------------------------- 
 
 ochiNHs33=-17 
 write(6,*)'angle of N-H & s33 (e.g. -17) -->' 
 write(6,*)'-17' 
c read(5,*)ochiNHs33 
 
 alphoutofplane=25 
 write(6,*)'out-of-plane angle of s22 (e.g. 25)' 
      write(6,*)'25' 
c read(5,*)alphoutofplane 
 

 do j=1,ny 
  
   do i=1,3 
     uniNH(i)=uNH(j,i) 
     uniNC(i)=uNC(j,i) 
   enddo 
 
  chiNHs33=ochiNHs33 
  
c for geometry see Hong et al., JMR 135, p. 169, Fig. 2 
c cross product of N-Ca and N-H yields s22(into-plane) 
axis 
   call crossprodU(uniNH,uniNC,vs22intopl) 
 
c rotate N-H around s22(into-plane) axis to give s33 axis 
   call rotaxis(vs22intopl,chiNHs33,uniNH,vs33) 
 
c rotate s22(into-plane) around s33 axis to give s22 axis 
(tilted) 
   call 
rotaxis(vs33,alphoutofplane,vs22intopl,vs22) 
 
c cross product of s22 and s33 gives s11 
   call crossprodU(vs22,vs33,vs11) 
    
 do i=1,3 
   cols11(j,i)=vs11(i) 
   cols22(j,i)=vs22(i) 
   cols33(j,i)=vs33(i) 
 enddo 
  
 enddo    !j residue 
number 
  
 goto 20  !skip CO calculation (needs to be 
renamed, otherwise functional) 
  
c---------------------------------------------------- 
c determine principal axes of 13CO CSAs 
c---------------------------------------------------- 
 
c ochiCOs22=0 
c write(6,*)'angle of C-O bond & s22 (e.g. 10) --
>' 
c read(5,*)ochiCOs22 
c 
c do j=1,ny 
c 
c   do i=1,3 
c     uniCO(i)=uCO(j,i) 
c     uniCN(i)=uCN(j,i) 
c   enddo 
c 
c if(j.eq.1) then   !1st 
residue has only Calpha 
c  chiCOs22=-ochiCOs22 
c else 
c  chiCOs22=ochiCOs22 
c endif 
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c for geometry see Hartzell et al, JACS, 1987, 109, 5968, 
Fig2. 
c cross product of C-N and C-O yields s33 (out-of-plane) 
axis 
 
c   call crossprodU(uniCN,uniCO,vCs33) 
 
c rotate C=O bond (in the plane) around s33 axis to give 
s22 axis 
 
c   call rotaxis(vCs33,chiCOs22,uniCO,vCs22) 
 
c cross product of s22 and s33 gives s11 
 
c   call crossprodU(vCs22,vs33,vCs11) 
    
c do i=1,3 
c   cols11(j,i)=vCs11(i) 
c   cols22(j,i)=vCs22(i) 
c   cols33(j,i)=vCs33(i) 
c enddo 
  
c enddo    !j residue 
number 
  
c end of skipped CO section 
c---------------------------------------------------- 
c determine the orientation of the b-strand axis 
c---------------------------------------------------- 
 
20      write(6,*)'define b-strand axis and antiparallel b-
sheet plane' 
        write(6,*)'starting residue for b-sheet axis (e.g.13)--
>' 
 write(6,*)'start from #2-7 residue' 
 nstart=2 
c read(5,*) nstart 
  
 betax(1)=0. 
 betax(2)=0. 
 betax(3)=0. 
 betaxlen=0. 
  
 do j=nstart,nstart+5 
  
   do i=1,3 
    betax(i)=betax(i)+vCN(j,i) 
   enddo 
    
 enddo 
 
 
 do i=1,3 
   betaxlen=betaxlen+betax(i)*betax(i) 
 enddo 
 betaxlen=sqrt(betaxlen) 
 do i=1,3 
   ubetax(i)=betax(i)/betaxlen 
 enddo 
 write(6,*)ubetax(1),ubetax(2),ubetax(3) 

 write(6,*)betaxlen 
  
 thebetax=acosd(ubetax(3)) 
 if(sind(thebetax).ne.0) then 
   sinphi=ubetax(2)/sind(thebetax) 
   cosphi=ubetax(1)/sind(thebetax) 
   if(sinphi.gt.0) then 
     phibetax=acosd(cosphi) 
   else 
     phibetax=360.-acosd(cosphi) 
   endif 
 else 
   phibetax=0. 
 endif 
 write(6,*)'b-strand axis (theta,phi)= 
',thebetax,phibetax 
  
c---------------------------------------------------- 
c restrict to the labeled residues of interest 
c---------------------------------------------------- 
 
c k=1 
 write(6,*)'15N-labeled residue numbers (end: -
1, all:-99)-->' 
 write(6,*)'18, -1' 
c write(6,*)'1,2,6,8,11,15,17' 
 
c num(1)=1 
c num(2)=2 
c num(3)=6 
c num(4)=8 
c num(5)=11 
c num(6)=15 
c num(7)=17 
c 50 read(5,*)num(k) 
c if(num(k).gt.0) then 
c   k=k+1 
c   goto 50 
c endif 
  
c if(num(k).eq.-99) then  
  do k=1,ny 
   num(k)=k 
  enddo 
  numresi=ny 
c  goto 2001  !jump out 
c endif 
  
c numresi=k-1 
c numresi=7 
c now renumber residues 1..numresi 
 
 do k=1,numresi 
   do i=1,3 
     uNH(k,i)=uNH(num(k),i) 
     cols11(k,i)=cols11(num(k),i) 
     cols22(k,i)=cols22(num(k),i) 
     cols33(k,i)=cols33(num(k),i) 
   enddo 
 enddo 
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 write(6,*)'Number of residues = ',numresi 
 
c define start of rotation angle 
2001 write(6,*)'define betaplane using which CO 
vector?' 
 read(5,*) pstart 
 
c auto ouput many results 
 write(6,*)'angle range and incre between B0 
and b-strand axis -->' 
 read(5,*)beB0betax0, beB0betax1, int1 
 write(6,*)'rotation angle range and incre along 
b-strand axis -->' 
 read(5,*) gammabetax0, gammabetax1, inr 
 
c cal cycle 
 outnumt=(beB0betax1-beB0betax0)/int1+1 
 tcount=0 
100 beB0betax=beB0betax0+tcount*int1 
 b0(1)=0  
 b0(2)=sind(beB0betax)  !B0 in 
the y-z plane, same as sheet plane 
 b0(3)=cosd(beB0betax) 
 tcount=tcount+1 
 outnumr=(gammabetax1-gammabetax0)/inr+1 
 rcount=0 
200 gammabetax=gammabetax0+rcount*inr 
 
c remove r is r-1 problem 
 r=gammabetax 
 
c write(6,*)'rotation angle around b-strand axis -
->' 
c read(5,*) gammabetax  
 
c---------------------------------------------------- 
c now transform to make the b-strand axis the z axis 
c---------------------------------------------------- 
 gammabet0=0 
       call rotvect(phibetax,thebetax,0, 
     &              ubetax,testbetax) 
       write(6,*)'b-strand axis, should be 0 0 1:' 
       write(6,*)testbetax(1),testbetax(2),testbetax(3)   
       write(6,*) 
 
c calculate plane of sheet to determine gammabetax 
(angle betw)  
 
       do i=1,3 
  uniCO1(i)=uCO(pstart,i) 
       enddo 
 
 gammabetold=0 
 
       call rotvect(phibetax,thebetax,0, 
     &              uniCO1,uniCO2) 
       gammabetold=acosd(uniCO2(2))  !uniCO2(2) is 
the dot product between 

c    
 uniCO2 and the y-axis (0 1 0).        
 
 call crossprodU(uniCO2,testbetax,testperp) 
 
 gammabet0=acosd(testperp(1)) 
 !testperp(1) is the dot product between  
c    
 testperp and the x-axis (1 0 0). 
  
 if(testperp(2).lt.0) then 
        gammabet0=-gammabet0    
      endif 
 
      call rotvect(0,0,gammabet0, 
     &              testperp,testperp2) 
        write(6,*)'b-sheet plane, new CO axis, should be 1 0 
0:' 
       write(6,*)testperp2(1),testperp2(2),testperp2(3)   
c        write(6,*) 
  
 gammabetax=gammabetax+gammabet0 
 
 
c---------------------------------------------------- 
c now calculate frequencies 
c---------------------------------------------------- 
 
c apply rotation to all selected residues  
 
 
 do j=1,numresi 
  
   do i=1,3 
     uniNH1(i)=uNH(j,i) 
     v1s11(i)=cols11(j,i) 
     v1s22(i)=cols22(j,i) 
     v1s33(i)=cols33(j,i) 
   enddo 
    
      call rotvect(phibetax,thebetax,gammabetax, 
     &              uniNH1,uniNH2) 
 
       call rotvect(phibetax,thebetax,gammabetax, 
     &              v1s11,v2s11) 
       call rotvect(phibetax,thebetax,gammabetax, 
     &              v1s22,v2s22) 
       call rotvect(phibetax,thebetax,gammabetax, 
     &              v1s33,v2s33) 
   do i=1,3 
     uNH2(j,i)=uniNH2(i) !N-H bond of 
residue j in new frame 
     col2s11(j,i)=v2s11(i) !s11 axis of 
residue j in new frame 
     col2s22(j,i)=v2s22(i) !s22 axis of 
residue j in new frame 
     col2s33(j,i)=v2s33(i) !s33 axis of 
residue j in new frame 
c write(6,*)'col2s11',col2s11(j,i) 
   enddo 
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 enddo !j residue number 
  
 do j=1,numresi 
 do iw=1,nx 
   reNH(iw,j)=0. 
   reCSA(iw,j)=0. 
 enddo 
 enddo 
 
 do jw=1,nx 
 do iw=1,nx 
   rePISA(iw,jw)=0. 
   redat(iw,jw)=0. 
 enddo 
 enddo 
 
 do j=1,numresi 
  
c cos(theta)=B0*NH dot product 
  costheta=0. 
  cosgam1=0. !direction cosine 
  cosgam2=0. 
  cosgam3=0. 
  do i=1,3 
   costheta=costheta+b0(i)*uNH2(j,i) 
   cosgam1=cosgam1+b0(i)*col2s11(j,i)
 !direction cosine 
   cosgam2=cosgam2+b0(i)*col2s22(j,i) 
   cosgam3=cosgam3+b0(i)*col2s33(j,i) 
 enddo 
 
c calculate frequencies 
 
  wNH=0.5*delta*(3*costheta**2-1) 
  
wCSA=s11*cosgam1**2+s22*cosgam2**2+s33*cosga
m3**2 
  omegNH(j)=wNH 
  omegCSA(j)=wCSA 
  iwNHp=nx/2+wNH*wNHscal 
  iwNHm=nx/2-wNH*wNHscal 
 !2nd transition 
         iwCSA=(ppmmax-wCSA)*wCSAscal+1 
 
  write(6,*)'residue number: ', num(j) 
  write(6,*)'NH dipolar coupl., kHz & pts: 
',wNH,iwNHp,iwNHm 
  write(6,*)'N chemical shift, ppm & pts: ', 
wCSA, iwCSA 
 
c save PISA wheel 
 
   redat(j,1)=abs(wNH) 
   redat(j,2)=wCSA 
 
c put unit intensity into spectrum at the frequencies 
 
  reNH(iwNHp,j)=reNH(iwNHp,j)+1. !slice j 
is spectrum of NH bond j 

  reNH(iwNHm,j)=reNH(iwNHm,j)+1. !slice j 
is spectrum of NH bond j 
 
  reCSA(iwCSA,j)=reCSA(iwCSA,j)+1. 
   
  
rePISA(iwNHp,iwCSA)=rePISA(iwNHp,iwCSA)+1.  !2
D corr. spectrum 
  
rePISA(iwNHm,iwCSA)=rePISA(iwNHm,iwCSA)+1.  !
2D corr. spectrum 
 
 enddo  ! j residue number 
 
         write(6,*)'write 2D NH/CSA (PISA wheel) to the 
disk' 
  write(6,*)'read with read2dbin (100) in 
Matlab' 
 
   WRITE(6,*) 'Name of output file -->' 
 
   b=int(beB0betax) 
   p=r 
c   p=int(gammabetax-gammabet0) 
  
   WRITE(6,*) 'Name of output file -->' 
   if (b .lt. 100) then 
     outb=char(int(b/10)+48)//char(b-
int(b/10)*10+48) 
   else  
     outb=char(int(b/100)+48)//char(int((b-
int(b/100)*100)/10)+48) 
     & //char(b-int(b/10)*10+48)  
   endif 
   if (p .lt. 100) then 
     outp=char(int(p/10)+48)//char(p-
int(p/10)*10+48) 
   else  
     outp=char(int(p/100)+48)//char(int((p-
int(p/100)*100)/10)+48) 
     & //char(p-int(p/10)*10+48)  
   endif 
   outfile='t'//trim(outb)//'r'//trim(outp) 
 
   write(6,*)outfile 
435   format(a32) 
        open(unit=12,file=outfile,form='unformatted') 
        write(12) ((redat(i,j),i=1,numresi),j=1,2) 
        close(12) 
c ny=ny0 
  
 rcount=rcount+1 
 if (rcount.lt.outnumr) goto 200 
 if (tcount.lt.outnumt) goto 100 
 
 write(6,*)'re-run b-strand orientation (0//1) -->' 
 read(5,*)irerun 
 if(irerun.eq.1) goto 2001   
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 write(6,*)'re-run b-strand orientation (0//1) -->' 
 read(5,*)irerun 
 if(irerun.eq.1) goto 2001   
c 
         stop 
         end 
   

c ******************* end main program 
**************************** 
 
c Add subroutines and functions 
here!
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